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Code translation transforms programs from one programming language (PL) to another. One prominent use
case is application modernization to enhance maintainability and reliability. Several rule-based transpilers have
been designed to automate code translation between different pairs of PLs. However, the rules can become
obsolete as the PLs evolve and cannot generalize to other PLs. Recent studies have explored the automation
of code translation using Large Language Models (LLMs). One key observation is that such techniques may
work well for crafted benchmarks but fail to generalize to the scale and complexity of real-world projects
with inter- and intra-class dependencies, custom types, PL-specific features, etc. We propose AlphaTrans, a
neuro-symbolic approach to automate repository-level code translation. AlphaTrans translates both source
and test code, and employs multiple levels of validation to ensure the translation preserves the functionality
of the source program. To break down the problem for LLMs, AlphaTrans leverages program analysis to
decompose the program into fragments and translates them in the reverse call order.

We leveraged AlphaTrans to translate ten real-world open-source projects consisting of ⟨836, 8575, 2719⟩
(application and test) classes, (application and test) methods, and unit tests. AlphaTrans breaks down these
projects into 17874 fragments and translates the entire repository. 96.40% of the translated fragments are
syntactically correct, and AlphaTrans validates the translations’ runtime behavior and functional correctness
for 27.03% and 25.14% of the application method fragments. On average, integrated translation and validation
takes 34 hours (min=3, max=121) to translate a project, showing its scalability in practice. For the syntactically
or semantically incorrect translations, AlphaTrans generates a report including existing translation, stack
trace, test errors, or assertion failures. We provided these artifacts to two developers to fix the translation
bugs in four projects. They fixed the issues in 20.1 hours on average (5.5 hours for the smallest and 34 hours
for the largest project) and achieved all passing tests. Without AlphaTrans, translating and validating such
big projects could take weeks, if not months.
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1 Introduction
Application modernization offers numerous benefits to developers, including better performance,
maintainability, productivity, reliability, and security [28, 29, 31, 32]. Manual migration or modern-
ization of real-world projects can be time-consuming and error-prone. Code translation can help
automatically convert programs from one programming language (PL) to another.

Transpilers solely rely on program analysis and perform rule-based translation, failing to translate
code between languages that greatly differ in syntax or semantics [5]. This also makes them very
PL-specific; they cannot generalize to newer features of the same PL pairs easily, let alone other PLs.
Finally, the translations lack readability, requiring much effort to understand and validate them, and
naturalness, failing to create idiomatic code in the target PL [44]. State-of-the-art code translation
techniques attempt to harvest the emerging abilities of Large Language Models (LLMs) in code
synthesis to overcome the limitations of transpilers [42, 44, 62]. However, these techniques are
still limited to translating simple programs in crafted benchmarks or selected slices of real-world
projects due to the following challenges:
(1) Problem complexity. The source and target PLs can be fundamentally different in programming

paradigms, typing, and memory management. Some PLs have specific properties that may not
exist in others, e.g., constructor overloading in Java. Such complexities are beyond the abilities
of existing LLMs to handle, causing them to hallucinate when translating types, code constructs,
or even method names [44], making translations non-compilable or useless.

(2) Validation. The translation should preserve the functionality of the source project. Most existing
techniques follow a “translation first and validation next” approach, which can postpone the
validation and not benefit from the potential use of validation as feedback to correct the
translation [44]. A few techniques use formal methods [42, 62] to verify translations on the
go. However, these techniques cannot scale to real-world projects. One possible solution for
validation is reusing the tests in the source language. However, due to (1) multiple invocations
of different methods in unit tests and (2) inherent long call chains in real-world projects, testing
a translated method in isolation is impossible.

(3) Limited context window. Concerning repository-level translation, the entire project and, in many
cases, even the entire class cannot fit into the context window of current LLMs [25]. Assuming
an unlimited context window, LLMs still suffer from short attention span [38], preventing them
from properly capturing the intra- and inter-procedural dependencies in real-world projects.
This paper presents AlphaTrans, a neuro-symbolic1 approach for automated repository-level

code translation and validation. AlphaTrans leverages static analysis to resolve PL-specific features
of the source language (§4.1), decompose the source project into smaller fragments (§4.2), and
create a compilable project skeleton in the target language (§5). It then starts translating fragments
in reverse call order and validates them using existing tests when possible (§6). After translating
each fragment, AlphaTrans updates the project skeleton and ensures the whole project compiles,
gradually translating and validating the source project into the target PL. To improve translation
quality, static analysis again comes to the rescue: AlphaTrans collects relevant context for each

1The keyword symbolic here refers to a general term of symbolic learning in contrast to machine learning and should not
be confused with symbolic execution. We refer to combining LLMs and program analysis as a neuro-symbolic approach.
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fragment, including translated callee methods and surrounding contexts, e.g., class declaration,
global variables/fields, etc. It also uses relevant in-context examples based on the specific properties
of the fragment to be translated. AlphaTrans implements two types of dynamic validation: (1)
running the source tests on the translated fragments in isolation using language interoperability
(§6.1) and (2) decomposing, translating, and executing the source tests on the translated fragments
(§6.3). Finally, AlphaTrans recomposes the translated fragments to create the program in the
target PL (§6.2).

Our approach of compositional translation and validation is PL-agnostic; however, implementing
the program transformation component is PL-specific. For the first version of AlphaTrans, the
implementation supports translating Java code to Python. Our motivations for choosing this PL pair
are: (1) Java offers many features that are not supported or common in other PLs by default (e.g.,
method/constructor overloading, complex types, circular dependencies, local or anonymous inner
classes, interfaces, etc.); (2) Python programs are not compiled but interpreted, which makes many
translation issues that can be caught at the compile time remain undetected until test execution
and challenge the validation; and (3) both PLs are popular (top-5 on the TIOBE index [56]).
Using AlphaTrans to translate ten real-world Java projects to Python corroborates its effec-

tiveness: It can translate 17874 field/method/test fragments, with 96.40% syntactic correctness.
For the 4654 application method fragments that can be further evaluated through test execution,
AlphaTrans achieves 27.03% runtime validation and 25.14% functional equivalence using the
source tests. AlphaTrans is scalable, completing translations in 34 hours, on average. Human
subjects improved partial translation of AlphaTrans and achieved passing test suites within
20.1 hours, on average, showing practicality of AlphaTrans. These results were achieved using a
moderate-size open-access LLM (DeepSeek-Coder-33b-Instruct [24]). A stronger model, i.e., GPT-4o,
improves the performance of AlphaTrans to 99.2% syntactic correctness for all fragments and
27.95% functional equivalence for method fragments, with an overhead of $14.39 per project, on
average. The affordable cost is due to the novel features of the pipeline, namely, decomposition
into fragments, prompt crafting, in-isolation validation of translations, and efficient feedback loop.

To the best of our knowledge, AlphaTrans is the first technique to translate an entire repository,
including tests, and generates validated translations (considering existing tests). The only prior
repository-level translation attempt using GPT-4 [44] (translating Apache Commons CLI from Java
to Python) resulted in non-compilable code, let alone the translation being validated. AlphaTrans
is also the first technique leveraging language interoperability for in-isolation validation of translated

fragments. The effort of human subjects to fix translation bugs by AlphaTrans and achieve passing
tests creates pragmatic bug data sets for testing, bug localization, and program repair research. Our
code and artifacts are publicly available for reproducing the results or translating new projects [33].

2 Challenges in Repository-Level Code Translation
To illustrate the most notable challenges in repository-level code translation and validation, we use
the hypothetical example in Figure 1, inspired by the complexities in real-world Java projects.

Challenge 1: Class Size. The class consists of 25, 380 tokens ( a ). Instructions for translating the
code, in-context examples, and the model’s response can also significantly increase the number of
input tokens. While some commercial LLMs support tens of thousands of tokens, many open-access
LLMs do not. For example, DeepSeek-Coder-33b-Instruct [24] used in this paper has a context
window of 16, 384 tokens, of which only 4, 096 tokens can be used for generation. To address
this challenge, AlphaTrans decomposes Java application classes into smaller field and method

fragments and translates each separately in reverse call order (§4.2.1, §4.2.2).
Challenge 2: PL-specific Properties. Java programs frequently use method/constructor over-

loading, which is not supported directly in Python ( a ). This example shows instances of constructor
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Transformation and decomposition Test decomposition Translation validation
public class ArgExp extends Exception {
  private Option option;
  public ArgExp(Option option) {
 this(option.getKey());
 this.option = option;}
  public ArgExp(String msg) { 
 super(msg);}
  public String getMsg() {...} 
  public int getNumArgs() {...} 
  public int getLen() {...} 
  public void createMsg() { 
 ...;
   getMsg(); getNumArgs();...;}
}

29 tokens

16 tokens
11438 tokens
2390    tokens
5056    tokens

6893    tokens
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public class ArgExp extends Exception {
private Option option;
public static ArgExp ArgExp1(int id, 
     Option opt, String msg) {
  if (id == 1)
      return new ArgExp(id, opt, opt.getKey());
  return new ArgExp(id, opt, msg);}
public ArgExp(int id, Option opt, String msg) {
  super(msg);
  if (id == 1)
      this.option = opt;}
public String getMsg() {...}
public int getNumArgs() {...}
public int getLen() {...}
public void createMsg() {...; getMsg();
  getNumArgs();...;}
}

a public class TestArgExp {
 public void test01() { 
   ArgExp obj = new ArgExp(0, null, "message");
   int num = obj.getNumArgs();
   assertEqual(num, obj.getLen());
   obj.createMsg(); 
   assertEqual("exp", obj.getMsg());
 }
}

0
1
2
3
4
5
6
7
8
9
10
11
12
13

c e

b d f
public class TestArgExp {
 public void test01_0_decomposed() { 
   ArgExp obj = new ArgExp(0, null, "message");}
 public void test01_1_decomposed() { 
   ArgExp obj = new ArgExp(0, null, "message");
   int num = obj.getNumArgs();}
public void test01_2_decomposed() { 
   ArgExp obj = new ArgExp(0, null, "message");
   int num = obj.getNumArgs();
   assertEqual(num, obj.getLen());}
public void test01_3_decomposed() { 
   ArgExp obj = new ArgExp(0, null, "message");
   int num = obj.getNumArgs();
   assertEqual(num, obj.getLen());
   obj.createMsg();}
public void test01_4_decomposed() {
// original test01 body}}
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class TestArgExp(unittest.TestCase):
  def test01_0_decomposed(self): 
    …
  def test01_1_decomposed(self): 
    …
  def test01_2_decomposed(self): 
    …
  def test01_3_decomposed(self): 
    …
  def test01_4_decomposed(self): 
    …

fail

pass
0
1
2
3
4
5
6
7
8
9
10
11
12
13

test01
ArgExp

getNumArgs

getLen

createMsg

public class ArgExp extends Exception {
 private Option option;
 public static ArgExp ArgExp1()
 public ArgExp()
 public String getMsg()
 public int getNumArgs()
 public int getLen()
 public void createMsg()}

def __init__(...):
super.__init__(msg)
if id == 1:
self.option = opt

Original code

Transformed code Isolation

Execution trace

Original test

Decomposed test

Test execution

pass
pass

Fig. 1. Illustration of key challenges in repository-level code translation and AlphaTrans addressing them.

overloading (lines 2 and 5). In Python, declaring two constructors is allowed; however, at runtime,
the last declaration overrides all previous constructors, resulting in unexpected behavior. To address
this issue, AlphaTrans employs program analysis to refactor the original code while preserving
the functionality (through test execution). The transformation includes changing the constructor’s
name, updating the references, and changing the constructor’s implementation. The transformed
code ( b ) makes the source program amenable to translation to Python.
Challenge 3: Validation. To illustrate the challenges with validation, consider test01 ( c )

that invokes four methods in its body (ArgExp, getNumArgs, getLen, and createMsg) to test the
functionality of method getMsg in the assert statement. Suppose we can successfully translate
all methods except createMsg. If we choose test translation (a natural way of validating code
translation), the execution of the translated test results in a runtime error when invoking createMsg.
As a result, a translation issue in one method casts a shadow in validating the translation of
the other methods. We refer to this issue as the test translation coupling effect. To overcome this
challenge, AlphaTrans executes source language tests as-is (i.e., without translation) by leveraging
a language-interoperability framework called GraalVM [43] ( f ). In this setting, a test in the source
language is executed each time one of its invoked application methods (method fragments) is
translated. This approach validates functional equivalence of each method in isolation as the other
invoked application methods during test execution remain in the source language.
Challenge 4: Test Translation. GraalVM has certain limitations (§6.1), which prevents Al-

phaTrans from validating all the code fragments in isolation. Furthermore, we need to translate
tests regardless of whether they are used for validation to maintain the translated projects in the
target language. Test errors due to test translation coupling effect under-approximate the quality of
translation: failing to validate the translation of four methods because of one incorrect translation.
To overcome this challenge, AlphaTrans decomposes the original test suite into test fragments

( d ). Executing the translated decomposed test suite results in three test passes ( e ), validating the
runtime behavior of three methods that the original test suite could not promptly provide.
An alternative approach is parsing the stack trace and code coverage results for each runtime

error during translation. However, test decomposition is a cleaner way to see the results per test
execution promptly. It is also done once before translation. In translation to interpreted languages
such as Python, specifically, the execution of test fragments can validate the runtime behavior of
methods before waiting for functional validation. For fragments that GraalVM cannot validate, if
AlphaTrans can successfully translate all the methods invoked during test execution and the test
passes, such a test will also be used for validating functional correctness.
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 __option: Option = None
 @staticmethod
 def ArgExp1(id: int, opt:            
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 opt:Option,msg:str):
   pass
  def getMsg(self) -> str:
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Fig. 2. Overview of AlphaTrans.

3 Overview of Approach
AlphaTrans consists of three main phases, shown in Figure 2: program transformation and
decomposition (§4), type translation and skeleton construction (§5), and compositional translation
and validation (§6). The first two phases aim to decompose and simplify the repository-level code
translation problem for LLMs, helping the third phase yield high-quality validated translations.

The program transformation and decomposition phase first refactors the PL-specific properties
of the source program into programming paradigms common among many PLs (§4.1). Next, it
decomposes the source project into smaller units, i.e., fragments, and stores fragment dependencies
in a data structure called schema (§4.2).
The type translation and skeleton construction phase takes the schema as input and produces

target project skeleton, i.e., a compilable project in the target language with method signatures
but no method implementation (§5.2). The first translation step happens here, where the source
PL types are translated to the target PL to ensure that class skeletons are compilable (§5.1). The
outcome of type translation is a type mapping from the source to the target PL, which AlphaTrans
can reuse in translating other projects.
The compositional translation and validation phase takes the schema and project skeleton as

inputs and translates fragments, in reverse call order, by prompting an LLM. After translating a
fragment, it updates the class skeleton with a new translation and checks whether the skeleton
compiles. For a method fragment, AlphaTrans looks for corresponding tests and, if any exist,
uses them to validate the fragment. The first level of validation is performed through GraalVM’s
language interoperability to isolate the validation of the method using tests in the source language.
Next, AlphaTrans translates and executes the tests. In case of compilation errors or test failures,
AlphaTrans reprompts the LLM with feedback (from the compilation/runtime errors) to improve
the translation. If no improvement is achieved within a certain budget, AlphaTrans continues to
the next fragment until all are translated. For methods whose translations are not compilable or
result in test errors/failures, AlphaTrans generates reports consisting of existing translations and
relevant artifacts, such as stack traces, test errors/failures, and test coverage information.

4 Program Transformation and Decomposition
4.1 Program Transformation
This component performs semantics-preserving refactoring of method and constructor overloading
in Java code to make it amenable to translation to Python. Other Java-specific features, namely,
circular dependencies, inner classes, interfaces, and abstract classes, are handled while constructing
the project skeleton in Python (§5.2). The reason for resolving method and constructor overloading
in the source language is that we have to change the implementation, i.e., call sites to methods and
constructors. Therefore, such changes should be validated using source tests before translation.
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public ArgExp(Option opt) {
  this(opt.getKey());
  this.option = opt;
}
public ArgExp(String msg) {
  super(msg);
}

1
2
3
4
5
6
7 Original code

public ArgExp(Option opt) {
  this(opt.getKey());  
}

public ArgExp(String msg) {
  super(msg);
}

1
2
3
4
5
6
7

public ArgExp(Option opt) {
  this.option = opt;
  this.threshold = 1;
}
public ArgExp(String msg) {
  this.msg = msg;
}

1
2
3
4
5
6
7

public static ArgExp ArgExp1(
              int id, Option opt, String msg){
  if (id == 1)
    return new ArgExp(id, opt, opt.getKey());
  return new ArgExp(id, opt, msg);}
public ArgExp(int id, Option opt, String msg){
  super(msg);
  if (id == 1)
    this.option = opt;}

1
2
3
4
5
6
7
8
9

public static ArgExp ArgExp1(Option opt) {
  return new ArgExp(opt.getKey());
}

public ArgExp(String msg) {
  super(msg);
}  

1
2
3
4
5
6
7
8
9

public ArgExp(int id, Option opt, String msg){
  if (id == 0) 
{
   this.option = opt;
   this.threshold = 1;
} 
  else {
   this.msg = msg
}

1
2
3
4
5
6
7
8
9

(c)(b)(a)

Original codeOriginal code

Transformed codeTransformed codeTransformed code

Fig. 3. Constructor overloading patterns and their corresponding transformations.

For overloaded methods, AlphaTrans makes each method name unique by adding an integer
suffix (starting at 0) to the name, and updates all call sites based on the new method names.
Resolving overloaded constructors is not as straightforward, as they should have the same name as
the enclosed declaring class. Furthermore, the invocation of constructors inside each other and the
Java inheritance mechanism makes constructor overloading complex. Our algorithm (Algorithm 1)
for resolving the constructor overloading handles three prominent patterns shown in Figure 3.2

Algorithm 1: Constructor Overloading
Inputs: Overloaded Constructors𝑂𝐶𝑠

Output: Code without Overloaded Constructors 𝑁𝑂𝐶𝑠

1 if !ℎ𝑎𝑠𝑇ℎ𝑖𝑠𝐶𝑎𝑙𝑙 (𝑂𝐶𝑠 ) then
2 ids← 𝑐𝑟𝑒𝑎𝑡𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝐼𝐷𝑆 (𝑂𝐶𝑠 ) ;
3 NOCs←𝑚𝑒𝑟𝑔𝑒 (𝑂𝐶𝑠, 𝑖𝑑𝑠 ) ;
4 else
5 if ℎ𝑎𝑠𝑂𝑛𝑙𝑦𝑇ℎ𝑖𝑠𝐶𝑎𝑙𝑙 (𝑂𝐶𝑠 ) then
6 refactor ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑓 𝑎𝑐𝑡𝑜𝑟𝑀𝑒𝑡ℎ𝑜𝑑 (𝑂𝐶𝑠 ) ;
7 NOCs←𝑚𝑒𝑟𝑔𝑒 (𝑂𝐶𝑠, 𝑟𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟 ) ;
8 else
9 refactor ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑅𝑒𝑓 𝑎𝑐𝑡𝑜𝑟𝑀𝑒𝑡ℎ𝑜𝑑 (𝑂𝐶𝑠 ) ;

10 ids← 𝑐𝑟𝑒𝑎𝑡𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟𝐼𝐷𝑆 (𝑂𝐶𝑠 ) ;
11 NOCs←𝑚𝑒𝑟𝑔𝑒 (𝑂𝐶𝑠, 𝑟𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟, 𝑖𝑑𝑠 ) ;

12 𝑟𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟𝐶𝑎𝑙𝑙𝑆𝑖𝑡𝑒𝑠 ( ) ;
13 return NOCs;

The first pattern (Figure 3-a) shows mul-
tiple independent constructors. AlphaTrans
merges these constructors into one and uses
an id parameter to differentiate between them.
All call sites of the constructors are updated
accordingly to use the appropriate id value.
The second pattern (Figure 3-b) involves a
constructor call chain using this(). Alpha-
Trans transforms the first constructor into
a factory method and invokes the second
constructor inside it. Factory methods are
static, and AlphaTrans updates the call sites
to invoke them directly on the class, e.g.,
ArgExp.ArgExp1(id,opt,msg). The last pattern
(Figure 3-c) is similar to the second one, except that both constructors implement some code.
AlphaTrans refactors the first constructor into a factory method and adds an extra id parameter
to differentiate between behaviors implemented by different constructors. The constructor call
sites are updated accordingly, as in the previous cases. Real-world projects often combine these
patterns, which AlphaTrans handles using Algorithm 1.

4.2 Program Decomposition
Translating the entire repository of real-world projects is a very complex problem. As a result,
AlphaTrans breaks down projects into fragments, performs the translation and validation at the
fragment level, and re-composes the translation as a repository in the target language.

4.2.1 Source Decomposition. Real-world projects can include hundreds of files with thousands of
lines of code, which exceed the context window of state-of-the-art LLMs. AlphaTrans employs
static analysis to decompose code into smaller fragments, i.e., field fragments and method fragments.
A field fragment includes modifiers, type, name, and field value. A field fragment can belong to
an application or test class. A method fragment includes the method signature and can be an
2Following the best practices for constructor overloading from Stack Overflow and analyzing the use of constructor
overloading in open-source projects, we categorized the use cases into the three patterns.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE109. Publication date: July 2025.



A Neuro-Symbolic Compositional Approach for Repository-Level Code Translation and Validation FSE109:7

application or test method (e.g., helper methods or unit tests). During decomposition, AlphaTrans
extracts meta-information related to the fragments, such as their location (e.g., start and end line),
code (e.g., implementation between start and end line), dependencies (e.g., callers and callees),
types (of inputs and output), and other necessary information such as file paths, class inheritance,
imports, and method annotations. AlphaTrans stores fragments and their corresponding collected
meta-data in a data structure called schema, which is used in the other phases. AlphaTrans also
extracts the call graph to guide the translation, i.e., to translate fragments in reverse call order.
4.2.2 Test Decomposition. The burden of checking functional equivalence in AlphaTrans is on
GraalVM. Yet, we still need to translate and execute tests to validate the fragments that cannot
be validated by GraalVM (§6.1). Unit tests in real-world projects can invoke multiple methods
and include multiple assert statements. Furthermore, long call chains are inevitable in real-world
projects due to the high degree of intra- and iter-procedural dependencies. As we show later (§7.4),
the average number of direct method invocations and method executions in tests for our studies
subjects are 3 and 27, respectively. This can result in test translation coupling effect, discussed in §2.

To enable test translation for runtime validation or checking functional equivalence, AlphaTrans
decomposes each unit test into a series of test fragments, as shown in Figure 1-d. It uses each
statement with a call to an application method as a cutting point. For statements enclosed by
branches, loops, of exception-handling blocks, AlphaTrans includes the entire block. This process
generates an ordering of executable test fragments for each unit test. Each test fragment includes
all the statements of the lower-order fragments, along with additional statements that invoke one
additional method not invoked by previous fragments. AlphaTrans executes test fragments in
increasing order until a test fails and skips running following fragments, as they will also fail.

5 Type Translation and Skeleton Construction
5.1 Type Translation class ArgExp(Exception):

__option: Option = None
  @staticmethod
  def ArgExp1(id: int, opt: Option, \
              msg: str) -> ArgExp:

  pass
  def __init__(self, id: int, opt: \
               Option, msg: str):

  pass
  def getMsg(self) -> str:

  pass
 def getNumArgs(self) -> int:
  pass
def getLen(self) -> int:

 pass
def createMsg(self) -> None:
  pass

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Fig. 4. Target PL skeleton for the example

in Figure 1-b.

Automatically resolving types is a challenging problem [23,
55], and a large body of work has attempted to address
this, mostly using symbolic rule-based approaches [7, 10,
21, 35, 47, 48]. AlphaTrans employs a Retrieval-Augment
Generation (RAG) [37] technique for finding equivalent
types in the target language. To that end, it first extracts
all the types in the source language of a given project. Cus-
tom application types are resolved during the translation
as AlphaTrans translates fragments and classes in the
target language. For the remaining types, it crawls the API
documentation of the source language and retrieves the
relevant description of each type.

To form the prompt,3 AlphaTrans uses the retrieved description and instructs the model with
an in-context example to return the most relevant type in the target language, given the use of
types in the source language and the retrieved description. To account for potential hallucination in
LLM’s response, i.e., returning a type that does not exist in Python, AlphaTrans employs a simple
Python script, uses the translated type as an annotation, executes the script, and keeps the ones
that have no syntactic or runtime issue. The types in the source language and their corresponding
in the target language form a data structure called universal type mapping. In practice, AlphaTrans
reuses or augments the mapping when translating new projects.

3Due to space limit, we omit the prompt; please refer to our artifacts [33] to see the prompts used for type resolution.
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5.2 Skeleton Construction
AlphaTrans builds the project’s structure in the target language before translation. This step is
necessary for compositional translation and validation, as AlphaTrans can insert the translated
fragments into the project, compile it, or even execute the existing translated test suites, gradually
completing the translation. At this step, AlphaTrans also resolves Java-specific features in Python
before starting the translation. Specifically, it resolves circular imports and dependencies, inner
classes, interfaces, and abstract classes. Figure 4 shows the class skeleton corresponding to the
illustrative example of Figure 1-b.

At the first step, AlphaTrans creates Python classes corresponding to each application class in
Java. The fields in the classes are set to None, andAlphaTrans uses the information in schema (§4.2.1)
to ensure the naming corresponds to the type of their access modifier in the source language. In the
example of Figure 4, the translation of field private Option option; in Java is __option: Option =

None. The classes also include method signatures, with their body set to pass. AlphaTrans uses
the universal type mapping (§5.1) to create relevant types in the method signature. Once the initial
skeleton is created, AlphaTrans leverages the extracted call graph during program decomposition
to detect circular dependencies. If such dependencies exist, AlphaTrans resolves them with local
imports. For inner classes, AlphaTrans unfolds them in Python and uses dot notation to access
specific methods and fields (e.g., Class.methodName). Finally, AlphaTrans implements best practices
in Python and subclasses all abstract classes and interfaces from abc.ABC class. Here, ABC is a class
from the abcmodule in the Python standard library, which is used for defining abstract base classes.

6 Compositional Translation and Validation

You are an AI programming assistant, utilizing the 
DeepSeek Coder model, developed by DeepSeek Company

Persona

Java Code: $ICL_JAVA_CODE
Partial Python Translation: $ICL_SKELETON
Python Translation: $ICL_PYTHON_TRANSLATION

ICL

### Instruction:
Translate the following Java method to Python 3.10 
like the example above.

Instruction

Java Code: $SRC_JAVA_CODE
Partial Python Translation: $CONSTRUCTED_SKELETON

Partial
Translation

### Response:
Python Translation:

Response

Fig. 5. Prompt structure in AlphaTrans.

AlphaTrans translates method fragments in re-
verse call order. It takes the project’s call graph, re-
moves the back edges to make it acyclic, computes
topological order (i.e., linear ordering of its vertices),
and translates method fragments (corresponding
to vertices) in reverse topological order. Field frag-
ments are independent; therefore, AlphaTrans trans-
lates them before method fragments. The algorithm
takes a fragment 𝐹 , LLM 𝑀 , Skeleton 𝑆, and a se-
ries of parameters as inputs, translates the fragment,
recomposes the skeleton with the successfully trans-
lated fragment, and returns translation outcomes:
(1) syntax check (denoted by the “non-parseable”
and “parseable” labels), (2) functional equivalence
check (denoted by the “graal-fail”, “graal-success”, and “graal-error" labels), and (3) translated test
execution check (denoted by “not-exercised”, “test-fail”, and “test-success" labels).

AlphaTrans employs iterative and feedback-based prompting. That is, if one of the mentioned
checks fails, e.g., the translated fragment is not syntactically correct, it prompts the model for
another translation. To control the number of iterations, AlphaTrans uses a reprompting budget
(repromptBudget). The algorithm takes the minimum (𝑚𝑖𝑛𝑏𝑢𝑑𝑔𝑒𝑡 ) and maximum (𝑚𝑎𝑥𝑏𝑢𝑑𝑔𝑒𝑡 ) values
for the budget and dynamically sets reprompting budget to a number between the lower and upper
bounds based on coverage information, e.g., the budget is close to𝑚𝑎𝑥𝑏𝑢𝑑𝑔𝑒𝑡 for a fragment if it is
exercised multiple times (high hit rate based on coverage information) by different unit tests. The
rationale is to give more importance to fragments covered by more tests to eventually increase
translation validation success.
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Algorithm 2: Main Translation Loop
Inputs: Skeleton 𝑆 , Fragment 𝐹 , Model𝑀 ,𝑚𝑖𝑛𝑏𝑢𝑑𝑔𝑒𝑡 ,

𝑚𝑎𝑥𝑏𝑢𝑑𝑔𝑒𝑡 , and 𝑡𝑜𝑝𝑘 suspicious methods
Output: Translation and Validation Outcome𝑇𝑉𝑂

1 feedback ← ∅; TVO ← {};
2 repromptBudget ←

𝑔𝑒𝑡𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝐵𝑢𝑑𝑔𝑒𝑡 (𝐹,𝑚𝑖𝑛𝑏𝑢𝑑𝑔𝑒𝑡 ,𝑚𝑎𝑥𝑏𝑢𝑑𝑔𝑒𝑡 ) ;
3 while repromptBudget > 0 do
4 prompt ← generatePrompt (F, feedback) ;
5 translation← translateFragment (prompt,M ) ;
6 if !𝑠𝑦𝑛𝑡𝑎𝑐𝑡𝑖𝑐𝐶ℎ𝑒𝑐𝑘 (𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) then
7 TVO[”syntax_outcome”] ← ”𝑛𝑜𝑛 − 𝑝𝑎𝑟𝑠𝑒𝑎𝑏𝑙𝑒”;
8 feedback ← getFeedback (translation) ;
9 repromptBudget ← repromptBudget − 1;

10 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;
11 TVO[”syntax_outcome”] ← ”𝑝𝑎𝑟𝑠𝑒𝑎𝑏𝑙𝑒”;
12 if !𝑔𝑟𝑎𝑎𝑙𝐶ℎ𝑒𝑐𝑘 (𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) then
13 TVO[”graal_outcome”] ← ”𝑔𝑟𝑎𝑎𝑙 − 𝑓 𝑎𝑖𝑙”;
14 feedback ← getFeedback (translation) ;
15 repromptBudget ← repromptBudget − 1;
16 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;
17 else if 𝑔𝑟𝑎𝑎𝑙𝐿𝑖𝑚𝑖𝑡𝑎𝑡𝑖𝑜𝑛 (𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) then
18 TVO[”graal_outcome”] ← ”𝑔𝑟𝑎𝑎𝑙 − 𝑒𝑟𝑟𝑜𝑟 ”;
19 else
20 TVO[”graal_outcome”] ← ”𝑔𝑟𝑎𝑎𝑙 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑠”;
21 if !ℎ𝑎𝑠𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑇𝑒𝑠𝑡𝑠 (𝐹 ) then
22 TVO[”test_outcome”] ← ”𝑛𝑜𝑡 − 𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒𝑑”;
23 𝑏𝑟𝑒𝑎𝑘 ;
24 𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 ← getTestTranslation(F ) ;
25 S ← 𝑆 ∪ 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛;
26 if !𝑡𝑒𝑠𝑡𝐶ℎ𝑒𝑐𝑘 (𝑆, 𝑡𝑒𝑠𝑡𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛) then
27 TVO[”test_outcome”] ← ”𝑡𝑒𝑠𝑡 − 𝑓 𝑎𝑖𝑙”;
28 repromptSuspiciousMethods (testTranslation, topK ) ;

29 repromptBudget ← repromptBudget − 1;
30 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;
31 TVO[”test_outcome”] ← ”𝑡𝑒𝑠𝑡 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑠”;
32 𝑏𝑟𝑒𝑎𝑘 ;
33 return TVO;

Algorithm 2 shows the main translation and
validation loop (lines 3–31), which runs until
the reprompting budget is exhausted. Inside the
loop, AlphaTrans first crafts a unique prompt
based on the template shown in Figure 5 and
then instructs the LLM to translate the frag-
ment (lines 4–5). It then validates the gener-
ated translation in multiple steps. The first step
checks for syntactic correctness and assigns
proper labels to TVO (lines 6–10). Then, Alpha-
Trans leverages GraalVM for isolation-based
validation of fragment 𝐹 (lines 12–20), if there
exists a test in the source language covering
the fragment during its execution.
Finally, it translates and executes decom-

posed fragment tests: if there are no eligible
tests (a test becomes eligible if all its dependen-
cies are translated) for the fragment, Alpha-
Trans simply assigns the “not-exercised” label
to the fragment and moves on to the next one
(lines 21–23). Otherwise, it translates the tests,
executes them to validate the fragment, and as-
signs test outcome labels in TVO (lines 24–31).
In case of a test failure, AlphaTrans extracts all
involved fragments and reprompts them with
feedback extracted from test execution.
Due to inherent intra- and inter-procedural

dependencies in real-world projects, the num-
ber of fragments involved in reprompting could
be high, logarithmically increasing the transla-
tion time. AlphaTrans filters out those with
GraalVM label “graal-success”, ranks the re-
maining based on suspiciousness score, and reprompts 𝑡𝑜𝑝𝐾 suspicious fragments. The suspi-
ciousness score for fragments is calculated such that a fragment with more failing tests will get a
higher score and, therefore, ranked higher among other fragments.

Our prompt template consists of five distinct parts (Figure 5). The first part is the personamessage
used by DeepSeek-Coder-33b-Instruct during instruction fine-tuning and is required for producing
the best outputs. The next part introduces the In-Context Learning (ICL) example, which reflects
the complexities of code translation and instructs LLM on how to deal with them. The green part
shows the natural language instruction given to the model. After describing the objective, the
prompt embeds the source Java code along with partial translation as a skeleton, which includes all
dependencies and translations of the fragments invoked by the current one. The prompt concludes
with ### Response: keyword to guide the model for code generation.

6.1 Language Interoperability
GraalVM [43, 60] is a Java Development Kit by Oracle. It offers the Polyglot API [22], which
allows the integration of programs written in different guest languages within a Java-based host
application. In the context of this work, GraalVM allows execution of Python code from Java and
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vice versa [3]. AlphaTrans leverages the Polyglot API to perform in-isolation validation of the
fragments by replacing the Java implementation of a method with its translated Python version
while keeping the rest of the project in Java. It then executes the Java tests covering the fragment
to validate the functional equivalence of the translation.

The Polyglot API allows access to Python data objects from Java and vice-versa, as these objects
reside in a shared memory space. However, objects must be cast to appropriate types for passing
parameters to, and processing returned values from, polyglot calls. The Polyglot API can perform
this casting implicitly for only a few simple data types. AlphaTrans builds on top of the Polyglot
API to provide a framework to create a Python program state that is isomorphic to the Java program
state. The Python translation is restricted to this isomorphic state, and the states are synchronized
after method calls to preserve the isomorphism. AlphaTrans allows for the casting of user-defined
types as well as several built-in and library types. Using both static and dynamic type information of
Java objects, AlphaTrans can disambiguate target types when casting Python objects to Java types.
It further preserves object identities and aliasing during such casting and propagates exceptions
across language boundaries.
To validate the translation of a method𝑚 in isolation, AlphaTrans creates an instrumented

version of the Java source code. We refer to this instrumented Java project as the primal project, 𝑃𝑚 .
During instrumentation, AlphaTrans replaces the original Java implementation,𝑚 𝐽 of𝑚 with
a polyglot call to its Python implementation,𝑚𝑃 .𝑚𝑃 resides inside a Python project, which we
refer to as the dual project, 𝐷𝑚 . The structure of 𝐷𝑚 is similar to that of the original Java project.
All other methods in 𝐷𝑚 wrap a call to the corresponding methods in 𝑃𝑚 . Doing so provides an
interface for𝑚𝑃 to execute with access to all other methods and fields, although these are defined
only in 𝑃𝑚 . Using the call graph for the Java project, AlphaTrans determines all test methods
that invoke𝑚 and executes them in 𝑃𝑚 to validate the translation𝑚𝑃 . This in-isolation validation
approach is limited in the sense that it can handle only a limited number of built-in and library
types. In certain cases, such as reference cycles involving maps or objects with impure methods for
hashing, the isomorphism between Java and Python states may not be maintained. Furthermore, it
may sometimes not be possible to disambiguate target types when casting Python objects to Java
types, for example, if the target object has type List<Object>.

6.2 Target Program Recomposition
AlphaTrans recomposes the project skeleton with syntactically correct translated fragments at
each iteration of Algorithm 1, gradually constructing the project in the target PL. The recomposed
target program in Python is executed against eligible translated tests, i.e., those that cover only the
translated fragments.

6.3 Test Translation
Similar to translating application fragments, AlphaTrans also translates test fragments. Using
the dependency information captured during static analysis, it crafts prompts for unit tests along
with their dependencies for the model to translate. The ICL examples used for prompting test
fragments differ from prompts used for translating application method fragments. The focus of ICL
examples here is to prevent the LLM from hallucinating the used assert statements in the source
PL to the target PL. To construct ICL examples for test fragment translation, we created a pool of
in-context examples, where each example shows the Python assert statements equivalent to Java
assert statements in the context of a test. When prompting a test fragment, AlphaTrans detects
the assert statement in the fragment and retrieves the corresponding examples from the pool. For
translated tests, only syntactic validation is performed as there is no other means of validating
their translations.
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7 Empirical Evaluation
To evaluate different aspects of AlphaTrans, we investigate the following research questions:
RQ1: Effectiveness of AlphaTrans. To what extent AlphaTrans can automatically resolve types

from source to target PL? Can AlphaTrans effectively translate real-world projects?
RQ2: Translation Bugs and Fixes. How much effort do developers spend completing the partial

translations by AlphaTrans? What is the nature of translation bugs?
RQ3: Impact of Test Decomposition. What is the impact of test decomposition on validation results?
RQ4: Impact of Test Coverage. To what extent does a test suite with higher coverage impact the

validation results?
RQ5: Ablation Study. To what extent do program transformation, choice of LLM, and program

decomposition impact the performance of AlphaTrans?
7.1 Experiment Setup
We followed three steps for selecting subjects: 1- Mining: We mined GitHub and retrieved a list of
repositories that use Java as the primary language, are self-contained (include build files, etc.), and
have more than 30 stars with at least one commit pushed within the last 12 months. 2- Filtering:
We filtered out projects based on the number of call edges in their call graphs: removed those with
less than 2, 000 call edges to ensure the subject projects are big enough to challenge AlphaTrans.
We also removed those with more than 30, 000 call edges to reduce the computation and manual
effort for further steps. Per GraalVM requirements, we only selected projects we could successfully
build (compile and achieve green tests) using Java at 21. 3- Reduction: AlphaTrans currently
supports the following Java APIs: core Java API (java.util, java.text, java.lang, java.io, java.nio,
java.net, java.time, and java.math) and third-party libraries (org.opentest4j, org.slf4j.Logger,
and org.junit). We automatically removed all other third-party library dependencies and their
usage in the source code in the selected projects. We chose a project if at least 50% of its total
methods were preserved after such process. Table 1 shows the list of ten projects used in the
evaluation of AlphaTrans and details about their size (classes, methods, tests, and fragments).

AlphaTrans uses CodeQL [20] and tree-sitter [59] for static analysis. For running tests, validating
translation, and computing coverage, AlphaTrans uses GraalVM 21.0.3 + 7.1 [43], JUnit 4 and
5 [54], Pytest 8.2.1 [46], JaCoCo [53], and Python’s coverage [6]. AlphaTrans works with API-
and open-access LLMs. We considered the following criteria for selecting the LLM: (1) for better
reproducibility, we prioritized open-access models; (2) due to computing constraints, we wanted an
LLM with moderate size (> 10𝐵 but < 70𝐵 parameters); (3) the model should perform reasonably
well in code-related tasks; and (4) the model should have fast inference time due to the huge number
of prompts. Per the mentioned criteria, we selected DeepSeek-Coder-33b-Instruct [24] for the main
experiments (RQ1–RQ4). We also used GPT-4o, one of the best-performing commercial models,
for RQ5 (§7.6) to demonstrate the impact of stronger models on improving the performance of
AlphaTrans. We prompted models with the temperature set to 0 for reproducibility and used their
default settings for other parameters. For the base prompting (Algorithm 2), we set the minimum
and maximum values of the reprompting budget to 3 and 5. For the feedback prompting, we set the
reprompting budget to 1, i.e., AlphaTrans attempts to fix issues with feedback only once.

7.2 RQ1: Effectiveness of AlphaTrans
In this RQ, we evaluate AlphaTrans in (1) type translation and skeleton construction (§7.2.1) and
(2) compositional translation and validation (§7.2.2).

7.2.1 Effectiveness in Type Resolution and Skeleton Validation: AlphaTrans extracted 1, 797 distinct
types from the source projects and attempted to translate them to equivalent Python types. Of
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Table 1. Effectiveness of AlphaTrans in program transformation, automated type translation, and skeleton

validation. ATR: Automated Types Resolution, SV: Skeleton Validation. The number of classes and methods

include both application and test classes/methods.

# Fragments
FieldsSubjects # Classes # Methods # JUnit

Tests
Method

Coverage (%) ATR (%) SV (%)
Application Test

Application
Methods

Test
Methods

cli [11] 58 664 437 94.14 96.60 100 104 57 273 2180
codec [12] 156 1780 992 91.03 96.01 100 425 140 680 2849
csv [13] 41 694 309 90.64 92.34 100 146 35 235 1272
exec [14] 56 407 70 54.84 78.90 100 104 27 248 327
fast-pfor [36] 82 971 82 54.55 87.40 100 127 14 748 302
fileupload [15] 49 381 39 13.02 98.31 100 121 39 192 194
graph [16] 118 879 146 58.78 97.13 100 216 29 541 975
jansi [51] 48 474 107 23.47 84.83 100 378 0 409 123
pool [17] 98 1097 73 22.29 91.60 100 203 91 682 649
validator [18] 130 1228 464 63.31 95.51 100 421 209 646 1463
Total 836 8575 2719 56.57 91.99 100 2245 641 4654 10334

these, 915 are application types (i.e., classes defined within the Java projects) and were directly
resolved during skeleton construction. AlphaTrans prompts DeepSeek-Coder-33b-Instruct to
resolve the remaining 882 and successfully translated 738 ((915 + 738)/1, 797 = 91.99%) of them:
the generated types passed the syntactic and runtime check. The column ATR in Table 1 shows
the results of automated type resolution. Because type resolution is essential to project skeleton
construction, we manually checked the type mappings generated by DeepSeek-Coder-33b-Instruct
and also translated the 144 unresolved types.

Through manual investigation of the automatically resolved types, we observed that DeepSeek-
Coder-33b-Instruct’s type resolution for 182 cases, while correct, can be improved. For example,
AlphaTrans translated java.io.File, a class concerning file manipulation functionality to str. The
resolved type can represent file paths in Python but lacks features for file manipulation. We suspect
this translation is impacted by the Java use case provided in the prompt. While this translation is
correct for the use case, we replaced it with pathlib.Path to have a more generic type mapping.
We also augmented the type mapping with additional types in the target language for 38 types.
For example, AlphaTrans translated java.nio.Buffer to bytearray, which is correct as they both
provide a mutable sequence of bytes with efficient in-place modifications. However, array.array
and memoryview also provide similar functionality with efficient and low-level data manipulation
capabilities. Consequently, we augmented type mapping to typing.Union[bytearray, array.array,

memoryview]. Given that type mapping can be reused, this one-time manual effort increases the
chance of AlphaTrans’s success on unseen projects.
Using the universal type mapping, AlphaTrans successfully creates and validates project

skeletons in the target PL, achieving 100% syntax and runtime validation (column SV in Table 1).
The skeleton validation step ensures all module imports, class structures, method signatures, and
type annotations are done properly, making the subsequent steps easier. Applying AlphaTrans to
unseen projects, if a class skeleton cannot be validated, AlphaTrans removes it from the target
project, updates the skeleton based on the class dependencies, and proceeds to the next phase.

Summary. AlphaTrans can successfully transform projects to remove method and con-
structor overloading. Moreover, it can automatically translate 91.99% of the source PL types
and use that to create and validate project skeletons in the target PL.

7.2.2 Effectiveness in Compositional Translation and Validation: Table 2 shows the compositional
translation and validation results. TheAMF column indicates the total number of applicationmethod
fragments. The numbers in subsequent columns demonstrate the effectiveness of AlphaTrans in

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE109. Publication date: July 2025.



A Neuro-Symbolic Compositional Approach for Repository-Level Code Translation and Validation FSE109:13

Table 2. Effectiveness of AlphaTrans in repository-level code translation. Abbreviations in the table stand

for AMF: #Application Method Fragments, SNEF: Source Non-Exercised Fragments, GS: Graal Success, GF:
Graal Fail, GE: Graal Error, TNEF: Target Non-Exercised Fragments, ATP: Fragments All Test Pass, OTF:
Fragments One Test Fail, MTF: Fragments Many Test Fail, ATF: Fragments All Test Fail, TPR: Test Pass Rate,
O: Overall, RE: Runtime Error, AF: Assertion Failure, and M1: Number of AMFs that GraalVM could not

execute (GE) but translated test fragments exercised.

GraalVM Test Translation
OTF (%) MTF (%) ATF (%) M1Subjects AMF

Syntax
Check
(%)

SNEF
(%) GS (%) GF (%) GE (%) TNEF(%)

ATP
(%) O RE AF O RE AF O RE AF

TPR
(%) All Some

cli 273 100 5.86 70.70 11.72 11.72 35.90 8.42 10.62 51.72 48.28 32.23 91.07 8.93 6.96 100 0 10.08 0 16
codec 680 98.53 8.97 38.38 32.50 20.15 65.59 4.12 4.41 60.00 40.00 12.79 55.11 44.89 4.12 75.21 24.79 9.43 11 27
csv 235 98.72 9.36 38.72 26.81 25.11 74.47 0 13.62 96.88 3.13 0 0 0 2.55 100 0 0 0 3
exec 248 100 45.16 33.47 2.02 19.35 34.27 4.44 2.02 40.00 60.00 7.26 93.36 6.64 6.85 100 0 19.29 6 9
fast-pfor 748 95.32 45.45 12.03 24.20 18.32 41.71 4.28 1.74 84.62 15.38 3.74 79.23 20.77 3.07 85.88 14.12 20.08 6 25
fileupload 192 100 86.98 8.85 1.04 3.13 1.56 3.65 6.77 30.77 69.23 1.04 91.67 8.33 0 0 0 63.44 2 3
graph 541 99.63 41.22 24.77 22.92 11.09 57.12 0 0.92 100 0 0.18 100 0 0.55 100 0 11.04 0 1
jansi 409 99.76 76.53 8.07 11.49 3.91 22.25 0.24 0.98 100 0 0 0 0 0 0 0 1.07 0 1
pool 682 100 77.71 6.01 1.32 14.96 19.35 1.61 1.03 100 0 0.29 100 0 0 0 0 6.62 4 2
validator 646 99.23 36.69 30.50 11.15 21.67 46.44 3.25 5.42 71.43 28.57 4.18 84.50 15.50 4.02 99.12 0.88 11.70 1 31
Total 4654 98.80 43.43 24.50 16.23 15.84 41.92 2.88 3.72 70.52 29.48 5.44 82.77 17.23 2.62 92.86 7.14 9.76 30 118

the translation and validation of AMFs only.4 The Syntax Check column indicates the percentage
of AMFs that pass syntactic validation. Column SNEF shows the percentage of AMFs not covered
by source project tests. AlphaTrans successfully generates syntactically correct code (98.80% of
AMFs and 96.40% of all fragments—field, application, and test fragments—across ten subjects). We
also observe that 43.43% of AMFs are not covered during the execution of any test, i.e., we cannot
go beyond syntactic check and validate their runtime behavior or functional equivalence.

For 56.57% of the AMFs that are covered by source project tests, AlphaTrans attempts to validate
their functional equivalence using GraalVM. Multi-column GraalVM shows the percentage of AMFs

that GraalVM executes and successfully validates (GS), executes but there is a test assertion failure
(GF ), and cannot execute due to its limitation (GE) mentioned in §6.1. 24.50% (min=6.01% and
max=70.70%), 16.23% (min=1.04% and max=32.50%), and 15.84% (min=3.13% and max=25.11%) of
AMFs resulted in Graal Success, Graal Fail, and Graal Error, respectively. Note that these numbers
add up to 56.57% of AMFs that were covered by source project tests. With respect to only covered
methods, GraalVM Success is 43.30%. Furthermore, our analysis shows that a high portion of
methods that are not covered by tests are either abstract methods or getter/setter methods. If
their translations are syntactically correct, they are also likely functionally equivalent, which can
ramp up the success rate (§7.5). Spearman Rank Order Correlation [52] indicates a strong positive
correlation between method coverage (Table 1) and GS numbers (𝜌 = 0.92), confirming that with
better method coverage, validated AMFs are very likely to be higher.
Regardless of GraalVM’s validation for functional equivalence, AlphaTrans translates and

executes the test fragments on the recomposed translated project. The Test Translation multi-
column shows the results of test translation and execution. Column TNEF indicates the ratio of
AMFs where execution of translated tests never reached them. Columns ATP through ATF show
the number of AMFs that AlphaTrans executed using translated test fragments, categorized per
the test execution results. For 2.88% of the AMFs, all the test fragments that covered them were
marked as pass (ATP). For 3.72% and 5.44%, at least one test (OTF ) or more than one test (MTF )
failed. All the test fragments failed for 2.62% of the AMFs. Note that these numbers (TNEF, ATP,
OTF, MTF, and ATF) add up to 56.57% of the AMFs that are covered by source project tests.

For cases with test failure, columns RE and AF show the breakdown of whether test failure was
due to assertion failure or runtime error. We can observe that most test executions terminated
4Please refer to our artifact [33] for details of all the translation and validation of other fragments shown in Table 1.
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with a runtime error due to translation bugs and never reached an assert statement. Our manual

investigation confirms that a high rate of runtime errors is due to a relatively small number of fragments

with translation bugs. Although test decomposition helps with test translation coupling effect (§2),
there is still a high degree of runtime errors due to long call chains in these projects (the average
number of methods executed per test in the original and decomposed test suites are 27.4 and 21.8,
respectively). As a result, the overall pass rate, i.e., the percentage of recomposed test fragments for
the translated projects that pass (column TPR), is low. These results also confirm the necessity of
in-isolation testing through language interoperability by AlphaTrans.
We also calculated the number of AMFs that GraalVM could not execute (numbers under GE

column) but translated test fragments exercised (column M1). All indicates the number of AMFs
with all passing tests, including test fragments with assert statements, indicating the validation of
functional equivalence (with respect to the source project tests). Some corresponds to the number
of AMFs with at least one passing test, which indicates runtime validation. Overall, test translation
validates the functional correctness and runtime behavior of 30 and 118 fragments that GraalVM
could not exercise.
Finally, we analyzed translations using PyLint [2], which scores Python files on a scale of 0

to 10 based on how Pythonic the code is. All AlphaTrans translations achieved scores of 10,
mainly because (1) LLMs inherently generate idiomatic code and (2) AlphaTrans uses Black [1]
for formatting the translations extracted from the LLM response. These results confirm that the
translations are all Pythonic, i.e., they adhere to Python coding standards and best practices.

Summary. AlphaTrans effectively performs compositional translation and validation of
17, 874 fragments, achieving overall 96.40% syntactic correctness (98.80% for AMFs), 27.03%
runtime behavior validation (GS+M1 Some), and 25.14% functional equivalence (GS+M1 All).

7.3 RQ2: Translation Bugs and Fixes
We investigated the manual effort for fixing translation bugs in a subset of studied subjects, namely
Commons-FileUpload, Commons-CLI, Commons-CSV, and Commons-Validator. We also discuss some
of the translation bugs and fixes for them to better illustrate the challenges in code translation.
7.3.1 Human Study. Our two human subjects were selected due to their relative familiarity with
the selected projects. Their effort indicates an upper bound for the amount of time required to fix
translation bugs since developers of the source projects are likely to fix the bugs better and faster.
We shared with them the source program in Java, the translations by AlphaTrans, and all the
reports and artifacts generated by AlphaTrans during translation.
For Commons-FileUpload, achieving green tests took 5.5 hours and required 120 and 114 line

additions and deletions from partial translations. For Commons-CLI, the manual fix took 11 hours,
making 614 and 1, 253 line additions and deletions, respectively. The project was very dense for
Commons-CSV, with many method calls, making it harder to manually fix bugs. Nevertheless, a
developer achieved all green tests in 30 hours with 2, 676 and 999 line additions and deletions,
respectively. Finally, for Commons-Validator, the developer spent 34 hours to fix translation bugs,
with 3, 585 and 2, 416 line additions and deletions, respectively. One of the major feedback from
developers was that test decomposition greatly helped locate and fix translation bugs: in case of a
test failure, developers only need to investigate the last call statement in the failed test fragment
instead of looking at the stack trace and other prior calls.
7.3.2 Translation Bugs. Our artifacts [33] contain partial translations and fixed versions as separate
commits. These commits can serve as useful benchmarks for evaluating fault localization, program
repair, and test generation techniques. This section shows four instances of such translation bugs.
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The two most prevalent sources of translation bugs are mismatches between APIs and behavioral
differences in the PLs. The code snippet below demonstrates a bug that happened due to a mismatch
in the logic of Calendar (Java) and datetime (Python). Line 3 in Java sets the MONTH field to 0, which
corresponds to the first month of the year (January). Similarly, the Python translation sets the
month attribute to 0; however, in the Python library, January corresponds to value 1 for month.

1 ----------- JAVA SOURCE CODE -----------
2 Calendar calendar = Calendar.getInstance()
3 calendar.set(Calendar.MONTH, 0);

1 ---------- PYTHON TRANSLATION ----------
2 calendar = datetime.datetime.now()
3 - calendar = calendar.replace(month=0)
4 + calendar = calendar.replace(month=1)

The next example shows the difference in implicit type casting between the two Pls. Line 5 in Java
source code concatenates a String value with null. During execution, Java runtime silently casts
null to a String and then performs the concatenation operation on it. In Python, concatenating an
str with None results in a TypeError as the operands of the binary operation has different types. A
correct Python translation requires explicit casting of None to str as shown in Line 5.

1 ----------- JAVA SOURCE CODE -----------
2 qChar = "'";
3 nullStr = null;
4
5 this.qNullStr = qChar + nullStr + qChar;

1 ---------- PYTHON TRANSLATION ----------
2 qChar = "'"
3 nullStr = None
4 - self.qNullStr = qChar + nullStr + qChar
5 + self.qNullStr = qChar + str(nullStr) + qChar

The third example shows an instance of write(int b)method from ByteArrayOutputStream class,
where the least significant 8 bits of the integer (b2 « 4) | (b3 » 2) are directly written to the
stream. The incorrect Python translation attempts to construct a bytes object using a singleton
list with the input integer before writing it to an object of type io.BytesIO. However, this neglects
that the bytes() constructor requires the integers in the input iterable to be strictly in the range of
[0, 255]. Thereby, a ValueError is thrown when b2 is large. The correct translation requires 0xF, a
mask that maintains only the 4 lowest bits of b2 before left-shifting by 4 as shown in Line 3 under
Python translation. Given that b3 and b4 each contain no more than 8 bits, this change ensures the
least significant 8 bits of (b2 « 4) | (b3 » 2) are correctly written to the BytesIO object.

1 ----------- JAVA SOURCE CODE -----------
2
3 out.write((b2 << 4) | (b3 >> 2));

1 ---------- PYTHON TRANSLATION ----------
2 - out.write(bytes([(b2 << 4) | (b3 >> 2)]))
3 + out.write(bytes([((b2 & 0xF) << 4) | (b3 >> 2)]))

The last code snippet demonstrates the Java behavior of an iterator that is unavailable in Python.
The incorrect Python translation uses next() to implement both next() and hasNext() methods
of the Java java.util.Iterator type. However, calling next() increments the iterator in Python.
The correct translation should implement PeekableIterator interface in Python with a method
hasNext() -> bool.

1 ----------- JAVA SOURCE CODE -----------
2 Iterator<String> headers = ls.keySet().iterator();
3
4 assertEquals("content", headers.next());
5
6 assertFalse(headers.hasNext());

1 ---------- PYTHON TRANSLATION ----------
2 - headers = iter(ls.keys())
3 + headers = PeekableIterator(ls.keys())
4 self.assertEqual("content", next(headers))
5 - self.assertFalse(next(headers, None) is not None)
6 + self.assertFalse(headers.hasNext())

Implications. To obtain correct translation, especially for code using library APIs, models need
to generate test cases as well that can validate the translated fragment in isolation. This could
be an interesting direction for applying an agentic approach, where the orchestrating agent can
decide when to generate test cases, and the test case generator agent gets all the information by
running static analysis tools, gathering context from previous runs, collecting API documentation
by crawling the internet, and finally generating the translation based on all the information.

Summary. Although AlphaTrans cannot validate all the translations, it provides partial
translations and artifacts that developers can use to complete the translation and achieve
green tests in a reasonable time (20.1 hours, on average).
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7.4 RQ3: Impact of Test Decomposition
We previously showed the effectiveness of test translation in validating the runtime behavior or
functional correctness of translated method fragments (§7.2.2). To better understand how test
decomposition helps address test translation coupling effect, we collected translated unit tests with
at least two decomposed test fragments. We further applied filtering and kept only those tests for
which all their decomposed fragments were executed, regardless of passing or failing outcomes.
The yellow bars in Figure 6 show the percentage of selected unit tests from the translated test suites.
None of the tests met the criteria for Commons-CSV, so we excluded it from further investigation.
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Fig. 6. Effectiveness of test decomposition in Alpha-

Trans for validating earlier fragments in failing tests.

We categorized the selected unit tests into
two groups: those with all passing test frag-
ments (green bars in Figure 6) and those with
at least one failing test fragment (red bars in
Figure 6). For the unit tests in the latter group,
we calculated the pass rate of the decomposed

test fragments. The blue box chart in Figure 6
shows the distribution of the measured pass
rate per unit test. These unit tests would have
beenmarked as fail without test decomposition.
However, we can observe that these tests can
be decomposed into test fragments such that
62.41% of them pass. These results indicate how decomposed test fragments were useful in helping
developers localize translation bugs more easily and resolve translation bugs faster.

Summary. Test decomposition unburdens validation of translated method fragments from
incorrect translations. 62.41% of test fragments for unit tests that would have been marked
as failed achieved passing outcomes.

7.5 RQ4: Impact of Test Coverage
Although existing developer-written tests are useful for checking functional equivalence, they
can pose two major issues for automated code translation and validation. First, the coverage
for these tests can be extremely low (e.g., 13.02% for Commons-FileUpload [15] as reported in
Table 1), preventing most of the code from being validated; as our investigation of RQ1 showed,
the translation validation rate strongly correlates with test suites’ (method) coverage. Second, a
developer-written test can have a long call sequence. To show the positive impact of more-focused
tests with higher coverage on translation validation, we automatically generated additional tests
using EvoSuite [19]. We used default tool configuration with a time budget of 120 seconds per class.
Table 3 compares properties of the developer-written and EvoSuite-generated tests. Evosuite

tests cover more methods than the developer-written test suite (66.87% Method Coverage compared
to 56.57%). Furthermore, the average number of methods executed per single test is almost half that
of decomposed test suites (11.41 compared to 21.84 methods). To demonstrate the impact of test
quality on AlphaTrans’s overall performance, we translated and executed the EvoSuite-generated
tests. Corroborated by the numbers under TPR+ and ATP+ columns, we can see that augmenting
the test suite increases the method coverage, and thereby, the TPR and ATP numbers from RQ1
by 5.85% and 2.11%, respectively. Not all EvoSuite tests have assertions, and even if they do, the
quality of the assertions could be lower compared to developer-written tests (e.g., checking trivial
properties with weak fault detection ability). Nonetheless, the higher TPR and ATP of such tests
enhance runtime validation, which is still promising in code translation. EvoSuite is incompatible
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Table 3. Effectiveness of test augmentation in exercising and validating more application method fragments.

Abbreviations in the table stand for ATP: Fragments All Test Pass and TPR: Test Pass Rate. ATP+ and TPR+

demonstrate ATP and TPR gain through test augmentation.

Developer-Written Test EvoSuite Test
Subjects Method

Coverage (%)
# Decomposed

Tests
Avg. Methods
Executed / Test

TPR
(%)

ATP
(%)

Method
Coverage (%) # Tests Avg. Methods

Executed / Test
TPR+
(%)

ATP+
(%)

cli 94.14 3036 34.25 10.08 8.42 95.97 569 12.15 2.99 1.47
codec 91.03 3522 10.56 9.43 4.12 80.74 1141 8.02 3.51 0.88
csv 90.64 1219 52.62 0 0 74.04 220 39.16 0 0.00
exec 54.84 311 18.99 19.29 4.44 61.29 245 6.32 3.27 1.21
fast-pfor 54.55 249 41.62 20.08 4.28 39.17 1843 4.31 5.59 1.07
fileupload 13.02 93 3.54 63.44 3.65 70.31 231 5.29 11.26 2.60
graph 58.78 933 25.02 11.04 0.00 76.71 800 9.00 5.13 0.92
jansi 23.47 187 13.57 1.07 0.24 51.83 332 9.08 3.31 0.73
pool 22.29 287 6.52 6.62 1.61 37.24 394 7.36 10.41 2.20
validator 63.31 1479 11.68 11.70 3.25 81.42 1305 13.43 9.73 7.59
Total 56.57 11316 21.84 9.76 2.88 66.87 7080 11.41 5.85 2.11

Table 4. Importance of program transformation. Abbreviations in the table stand for AMF: #Application
Method Fragments, SNEF: Source Non-Exercised Fragments, GS: Graal Success, GF: Graal Fail, GE: Graal
Error, TNEF: Target Non-Exercised Fragments, ATP: Fragments All Test Pass, OTF: Fragments One Test Fail,

MTF: Fragments Many Test Fail, ATF: Fragments All Test Fail, and TPR: Test Pass Rate.
GraalVM Test Translation

Subjects AMF SNEF
(%) GS

(%)
GF
(%)

GE
(%)

TNEF
(%)

ATP
(%)

OTF
(%)

MTF
(%)

ATF
(%)

TPR
(%)

cli 276 5.80 0 0 94.20 85.51 0 2.17 1.09 5.43 0.46
codec 678 10.62 0 0 89.38 72.86 2.06 5.46 2.80 6.19 5.04
csv 235 8.51 0 0 91.49 88.09 0.43 0.43 0.85 1.70 0.32
exec 253 46.25 26.88 4.35 22.53 49.41 1.58 1.19 0 1.58 4.29
fast-pfor 754 46.02 0 0 53.98 38.20 0.93 6.63 0.80 7.43 4.88
fileupload 168 85.12 10.71 0.60 3.57 8.93 1.19 2.98 1.19 0.60 23.08
graph 556 40.65 0 0 59.35 56.12 0 1.98 0.36 0.90 5.48
jansi 314 69.75 0 0 30.25 29.94 0 0.32 0 0 0
pool 574 70.56 0 0 29.44 27.00 1.39 0 0.35 0.70 5.48
validator 623 33.39 18.78 20.06 27.77 66.29 0 0 0.32 0 0.43
Total 4431 40.01 4.58 3.09 52.31 52.79 0.81 2.57 0.86 2.96 3.05

with Java 21, and hence GraalVM, which prevented us from using Evosuite-generated tests in
AlphaTrans. We anticipate that incorporating it in AlphaTrans could improve the overall quality
of translations.

Summary. Augmenting the existing test suite increases code coverage, thereby exercising
and validating more AMFs. Test augmentation can further validate the correctness of 2.11%
of fragments not executed by developer tests. The generated tests are more focused and, on
average, invoke 48% fewer methods than the developer-written tests.

7.6 RQ5: Ablation Study
We performed three ablation studies to investigate the impact of program transformation, choice
of LLM, and program decomposition on the performance of AlphaTrans.

7.6.1 Impact of Program Transformation. We removed the program transformation component of
AlphaTrans and executed the entire pipeline. The results in Table 4 show that without transfor-
mation (e.g., resolving method/constructor overloading), the performance of AlphaTrans drops
significantly: GS, ATP, and TPR values decreased to 4.58% (from 24.50%), 0.81% (from 2.88%), and
3.05% (from 9.76%), respectively. This is because Python does not support overloading and only
considers the last method/constructor implementation, resulting in runtime errors or test failures.
Also, GE values increase due to the interference of overloaded code constructs with GraalVM.
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Table 5. Effectiveness of AlphaTrans with GPT-4o in compositional translation and validation. Abbreviations

in the table stand for AMF: #Application Method Fragments, SNEF: Source Non-Exercised Fragments, GS:
Graal Success, GF: Graal Fail, GE: Graal Error, TNEF: Target Non-Exercised Fragments, ATP: Fragments All

Test Pass, OTF: Fragments One Test Fail,MTF: Fragments Many Test Fail, ATF: Fragments All Test Fail, TPR:
Test Pass Rate, O: Overall, RE: Runtime Error, AF: Assertion Failure, andM1: Number of AMFs that GraalVM
could not execute (GE) but translated test fragments exercised.

GraalVM Test Translation
OTF (%) MTF (%) ATF (%) M1Subjects

Syntax
Check
(%)

SNEF
(%) GS (%) GF (%) GE (%) TNEF(%)

ATP
(%) O RE AF O RE AF O RE AF

TPR
(%) All Some

Cost
($)

cli 99.63 5.86 76.92 8.79 8.42 78.39 4.76 3.66 90.00 10.00 6.23 100 0 1.10 100 0 2.47 0 1 19.69
codec 97.79 8.97 42.50 28.53 20.00 74.56 3.82 4.12 78.57 21.43 6.18 30.62 69.38 2.35 73.33 26.67 9.57 2 18 39.97
csv 98.30 9.36 41.28 25.96 23.40 86.81 0 0 0 0 1.70 78.17 21.83 2.13 96.72 3.28 0.98 0 8 16.66
exec 99.60 45.16 35.89 2.42 16.53 44.76 4.84 0 0 0 5.24 0 100 0 0 0 28.62 1 1 3.90
fast-pfor 97.46 45.45 14.71 16.98 22.86 52.94 1.47 0 0 0 0 0 0 0.13 100 0 2.41 2 0 12.93
fileupload 99.48 86.98 9.90 0.52 2.60 4.17 6.77 1.56 0 100 0.52 100 0 0 0 0 54.84 1 3 2.25
graph 98.71 41.22 27.73 19.04 12.01 58.78 0 0 0 0 0 0 0 0 0 0 0 0 0 12.03
jansi 99.76 76.53 8.07 11.98 3.42 23.47 0 0 0 0 0 0 0 0 0 0 0 0 0 3.66
pool 99.71 77.71 7.48 1.32 13.49 21.70 0.59 0 0 0 0 0 0 0 0 0 2.09 0 0 7.33
validator 99.23 36.69 38.24 15.94 9.13 54.95 4.02 2.32 93.33 6.67 1.55 70.59 29.41 0.46 100 0 10.41 0 3 25.53
Total 98.80 43.43 27.83 14.54 14.20 50.64 2.26 1.20 80.36 19.64 1.87 59.39 40.61 0.60 86.59 13.41 6.45 6 34 143.95

7.6.2 Choice of LLM. For this experiment, we replaced the DeepSeek-Coder-33b-Instruct with
GPT-4o and repeated the entire pipeline of AlphaTrans (Table 5). A stronger model such as
GPT-4o improves the translation quality—functional equivalence increases from 25.14% to 27.95%.
For some projects, the ATP and TPR rates are higher for DeepSeek-Coder-33b-Instruct translations,
whereas for the others, GPT-4o results in higher values. We investigated each LLM’s successful AMF
translations to better understand the differences. We observed a huge overlap between successful
AMFs and the unique benefits each LLM provides in code translation (Figure 7). GPT-4o handles
API translation and type casting better, resolving the first three translation bugs discussed in
§7.3. In contrast, it tends to add unnecessary code, mostly due to error handling, which results
in a functional mismatch. In the example below, create2 method can take a None value, and its
implementation performs error handling when necessary. GPT-4o adds unnecessary error handling
code, interfering with program logic and resulting in test failures.

1 ----------- JAVA SOURCE CODE -----------
2 public Option create1(OptionGroup optGroup) {
3 return create2(optGroup);
4
5 }

1 ---------- PYTHON TRANSLATION ----------
2 def create1(self, optGroup: OptionGroup) -> Option:
3 + if optGroup is None:
4 + raise ValueError("optGroup is None")
5 return self.create2(optGroup)

It is worth noting that using commercial LLMs comes at a cost. The last column of Table 5
(column Cost) shows the cost of using GPT-4o for repeating the experiments, resulting in the total
cost of $143.95 for translating all the subjects (average cost of $14.39 per project).

7.6.3 Impact of Program Decomposition. For this ablation study, we prompted GPT-4o and
DeepSeek-Coder-33b-Instruct file-by-file and evaluated translation correctness through test execu-
tion and GraalVM (Table 6). Not surprisingly, a considerable percentage of the files exceeded the
model context window size, particularly for DeepSeekCoder, with 9.08% of the files encountering
this problem. Among the prompted files, 21.36% (19.44% for DeepSeekCoder and 1.92% for GPT-4o)
were syntactically incorrect. Translations that passed the syntactic correctness check did not pass
any translated test execution, whereas GraalVM validated 2.56% of the files in total (1.02% for
DeepSeekCoder and 1.54% for GPT-4o). Note that file-level GraalVM validation does not mean
that all the methods are correctly translated and validated—only the methods in the class that are
executed by tests. Manual analysis of the results of this experiment revealed that one prominent
culprit of test failures was LLM hallucination with method/variable names. Given that we had
no skeleton construction in this baseline, such issues could not be avoided; this demonstrates the
usefulness of skeleton construction and incremental translation in AlphaTrans.
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Table 6. Importance of program decomposition. Abbreviations stand for GS: Graal Success and TPR: Test
Pass Rate. Since Java can contain multiple classes in one file, #Files is smaller from #Classes in Table 1.

GPT-4o DeepSeek-Coder
Subjects # Files Over

Context
Syntax
Error GS TPR

(%)
Over

Context
Syntax
Error GS TPR

(%)
cli 51 0 0 1 0 5 6 0 0
codec 136 0 1 7 0 28 46 4 0
csv 33 0 3 0 0 6 8 0 0
exec 54 0 0 0 0 1 4 0 0
fast-pfor 85 1 1 1 0 12 30 1 0
fileupload 43 0 0 0 0 2 4 0 0
graph 159 0 6 3 0 0 17 3 0
jansi 30 0 0 0 0 3 10 0 0
pool 72 0 1 0 0 4 8 0 0
validator 119 0 3 0 0 10 19 0 0
Total 782 1 15 12 0 71 152 8 0

Summary. Omitting program transformation and program decomposition significantly
lowers the effectiveness of AlphaTrans. A stronger model such as GPT-4o resolves non-
trivial issues concerning type casting and API translation but may result in trivial translation
bugs. When possible, users of AlphaTrans can prompt multiple LLMs to achieve better
translation performance.

8 Related Work

74 2051096

DeepSeek-Coder
GPT-4o

Fig. 7. Functional equiva-

lence overlap of AMFs (Graal

Success) between LLMs.

There are generally two main categories of techniques for translating
code from one PL to another: (1) using transpilers and statistical
machine translation and (2) leveraging language models.

8.1 Code Translation Using Non-LLM-Based Approaches
Tools like C2Rust [26], CxGo [58], Sharpen [45], and Java2CSharp [27]
translate code from C to Rust, C to Go, and Java to C# respectively. A
series of statistical machine translation techniques [8, 39–41] focus
on translating Java to C#. Deep learning approaches have also been
applied for code translation [48, 49]. None of these efforts have tackled
translating real-world Java projects to Python. LLM-based techniques
are also superior to transpilers in terms of performance or readability [44].

8.2 Code Translation Using LLMs
Recently, LLMs have been employed for code translation [9, 30, 44, 57, 61, 64], demonstrating high
success rates on crafted examples but poor performance on real-world projects. Other studies [4, 66]
have also applied language models for code translation, mainly focusing on crafted benchmarks.
Concurrently to our work, two other techniques for repository-level code translation focusing on
different language pairs were proposed [50, 65]. Syzygy [50] translates repository-level C to Rust
using GPT-4. Oxidizer [65] leverages language feature mapping and type-driven techniques for
translating Go to Rust. Both techniques use I/O equivalence for validating their translations. There
are also approaches that use transpiler output to guide LLM-based code translation [62]. However,
the limitation of such work is the availability of robust and well-maintained transpilers, which, in
many cases, may not be feasible. Nitin et al. [42] presented a specification-based translation, where a
natural language specification is captured from the source code, which helps the translation process.
Yang et al. [63] used tests to assist the translation. Compared to previous work, our contributions
include a compositional and validation-guided code translation approach that leverages two types
of validation techniques and evaluation of the approach on 10 real-world projects.
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9 Threats to Validity

External Validity. One of the key external threats is the generalizability of AlphaTrans. We
built and evaluated the first version of AlphaTrans to translate from Java to Python. However,
our pipeline is generic, and with minimal effort, the current implementation can translate Java
programs to more target languages (e.g., languages supported by GraalVM). Furthermore, the
majority of the tools that we used support a large set of programming languages such as JavaScript,
Ruby, C/C++, and Rust.

Internal Validity. One threat can be the manual validation of the translated types. To address
that, several authors verified the types individually and consulted API documents when necessary.
Another threat is that, while all successes reported by the GraalVM validation are true successes,
we may have underestimated the capabilities of AlphaTrans by a considerable margin due to the
significant proportion of errors caused by limitations in the GraalVM validation approach. To miti-
gate this threat, we manually augmented the universal type map to support a more comprehensive
translation of types. That said, we have implemented driver code templates to provide a mechanism
for adding the support for more types by the users of AlphaTrans if needed.

Construct Validity. In order to mitigate construct validity, AlphaTrans is built and validated
with well-vetted tools, such as GraalVM [43], JaCoCo [53], Python coverage [6], CodeQL [20], etc.

10 Concluding Remarks
In this paper, we introduced AlphaTrans, a neuro-symbolic approach that combines the power of
static analysis and abilities of LLMs in code synthesis to automate repository-level code translation
and validation. AlphaTrans decomposes the program into smaller fragments and translates the
fragments in reverse call order, incrementally building the source project in the target language. In
addition to syntactic checks, AlphaTrans implements two types of validation through GraalVM and
test translation. AlphaTrans is the first approach to translate and validate real-world projects, and
we envision several research directions to advance repository-level code translation and validation.

One of the major challenges in repository-level code translation is identifying suitable library
APIs in the target PL. Often, equivalent Python APIs may not exist, requiring new code generation
or translation of the library API itself. Even if similar libraries exist, the logic of libraries might be
different in two PLs. AlphaTrans supports translating frequently used APIs and aims to build a
generic pipeline. Supporting all the libraries in the pipeline remains an open challenge that we aim
to address in future work. Furthermore, while the idea of compositional translation and validation
is PL-agnostic, the static analysis makes the extension of AlphaTrans to translating from other
source projects challenging. Devising LLM-enabled or PL-agnostic static analysis approaches can
benefit code translation approaches such as AlphaTrans. We also showed that the quality of the
source project test suite can significantly impact the translation validation results. In future work,
we plan to integrate an LLM-based test generator into the AlphaTrans pipeline to enhance the
validation component.

11 Data Availability
Artifacts and implementation of AlphaTrans are publicly available [33, 34].
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