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Abstract—Flaky tests, characterized by inconsistent results
across repeated executions, present significant challenges in
software testing, especially during regression testing. Recently,
there has been emerging research interest in non-idempotent-
outcome (NIO) flaky tests—tests that pass on the initial run
but fail on subsequent executions within the same environment.
Despite progress in utilizing Large Language Models (LLMs) to
address flaky tests, existing methods have not tackled NIO flaky
tests. The limited context window of LLMs restricts their ability
to incorporate relevant source code beyond the test method itself,
often overlooking crucial information needed to address state
pollution, which is the root cause of NIO flakiness.

This paper introduces NIODebugger, the first framework to
utilize an LLM-based agent to repair flaky tests. NIODebugger
features a three-phase design: detection, exploration, and fixing.
In the detection phase, dynamic analysis collects stack traces
and custom test execution logs from multiple test runs, which
helps in understanding accumulative state pollution. During the
exploration phase, the LLM-based agent provides instructions for
extracting relevant source code associated with test flakiness. In
the fixing phase, NIODebugger repairs the tests using the infor-
mation gathered from the previous phases. NIODebugger can be
integrated with multiple LLMs, achieving patching success rates
ranging from 11.63% to 58.72%. Its best-performing variant,
NIODebugger-GPT-4, successfully generated correct patches for
101 out of 172 previously unknown NIO tests across 20 large-
scale open-source projects. We submitted pull requests for all
generated patches; 58 have been merged, only 1 was rejected,
and the remaining 42 are pending. The Java implementation
of NIODebugger is provided as a Maven plugin accessible at
https://github.com/kaiyaok2/NIOInspector.

I. INTRODUCTION

Flaky tests, as documented in numerous studies [1], [2],
[31, [4], [5], [6], [7], [8], exhibit inconsistent outcomes upon
repeated executions of the same version of the code. This
inconsistency stems from various factors, such as pollu-
tion of shared states. Often, flaky tests originate from pre-
existing issues within the codebase which predates recent
code modifications. Consequently, their unpredictable behavior
poses significant challenges in regression testing. Failures of
previously passed tests after code changes may potentially
lead developers to draw erroneous conclusions regarding the
introduction of new bugs [9], [10]. Furthermore, flaky tests can
obscure genuine defects since they typically fail under specific,
often uncommon, circumstances [11]. To address this issue,
numerous research endeavors have concentrated on automating
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the prediction [12], [13], [14], [15], [16], [17], detection [18],
[19], [20], [21], and mitigation [22], [23], [24], [25], [26] of
specific types of flaky tests.

Order-dependent (OD) flaky tests [27], [28] represent one
extensively studied category. OD tests exhibit deterministic
behavior in some test orders but fail in others. This behavior
arises from undesirable dependencies between tests, often
unnoticed due to implicit ordering among prevailing imple-
mentations of testing frameworks, like JUnit [29] for Java.
Detecting OD tests is crucial, particularly with respect to the
resilience of test suites to framework updates or migration to
advanced regression testing techniques such as test prioritiza-
tion, selection, and parallelization.

Exploring all possible orders of test execution can be exces-
sively time-consuming, especially for large test suites. There-
fore, one strategy for detecting OD tests entails identifying
latent-polluters and latent-victims within test suites. Latent-
polluters are tests that modify shared states without restoring
them, while latent-victims rely on deterministic shared states.
A recent study [30] has revealed that only a small portion
of latent polluters and victims are convertible into actual test
order dependency, as they mainly involve non-public states
or have negligible impact. In response, the study proposed
focusing on non-idempotent-outcome (NIO) tests [30], which
exhibit changes in test outcomes across repeated runs due to
their pollution of certain shared states. An NIO test is both a
latent-victim and a latent-polluter and can be easily identified
by running tests twice in the same environment. Detecting
NIO tests can aid in preemptively addressing OD test issues,
because an NIO test can become OD when a new test pollutes
the shared state, and can turn a new test into OD if it reads a
part of the NIO-polluted state. For example, in Figure 1, £1 ()
is an NIO test. Consider when t2 () is added - now t1 ()
becomes a real polluter of t2 (). On the other hand, when
t£3 () is added, the NIO test t1 () becomes a victim of t3 ().
The key to fixing an NIO test is to reset the polluted state
before or after test execution, which, in this case, is achieved
by resetting w to 0.

In recent years, numerous techniques have emerged to fix
program defects and even a subset of flaky tests. Multiple
research studies have focused on automatically fixing buggy
programs using Large Language Models (LLMs). CodeBERT

1014



W); w o=
W) ...

1 weoid tl() { assertEquals (0,
2 woid t2() { assertEquals (0,
3 weid t3() { w=1; ... }

1; } // NIO Test
}

Fig. 1: A Sample NIO Test

was the first LLM explored for automatic program repair
(APR) [31], while subsequent studies have shown promising
results using more advanced LLMs [32]. Among these, GPT
models have demonstrated superior performance in APR tasks
compared to other LLMs [33]. More recent research on LLM-
based bug fixing [34], [35] has emphasized the importance of
providing sufficient context, including buggy code, to enhance
the performance of LLMs in bug-fixing tasks. This has led to
the development of LLM-based agents [36], [37], [38], which
treat the LLM as an autonomous agent capable of planning and
executing actions to achieve the goal of fixing bugs. As for
flaky tests, though non-agentic LLM-based techniques have
achieved state-of-the-art results in addressing some types of
flaky tests that can be fixed without knowledge of the main
code under test [39], [40], they do not generalize well to others
[41] - due to the context window limitations of LLMs, these
techniques do not consider rich information from the source
code beyond the test code itself. In particular, non-agentic
techniques cannot fix NIO tests effectively, as it often requires
additional knowledge to properly clean up state pollution.

This paper presents NIODebugger, a three-phase approach
that uses an LLM-based agent to address NIO tests.

During the detection phase, NIODebugger reruns tests in
an isolated environment to record test status and flag potential
NIO tests, and also utilizes a custom summary listener to
detect variations in stacktraces across multiple test runs, which
may unveil patterns of state pollution—the cause of NIO tests.

During the exploration phase, NIODebugger retrieves the
test code for each NIO test and integrates it with the collected
dynamic analysis data. It queries an LLM for instructions to
find relevant source code that can assist in fixing the NIO test.
NIODebugger equips the agent with numerous code-extracting
workflows, allowing it to interact with the codebase for
context-specific information, similarly to a human developer.

Following the agent’s instructions, the fixing phase of
NIODebugger collects the relevant source code and queries
an LLM to fix tests. The LLM first generates a patch for the
specific test, and then uses the patch and the original test file
to generate a compilable file that replaces the original test file.

To evaluate the effectiveness of NIODebugger, we ran the
detection phase on a selection of popular open-source projects.
After running the detection phase at scale, we identified 172
flaky tests across 20 popular GitHub projects. We utilize four
different underlying LLMs (two open-source and two propri-
etary) for NIODebugger to compare their performance against
existing non-LLM-based baselines that can be extended to fix
NIO tests. The best variant, NIODebugger-GPT-4, significantly
outperforms baseline techniques by successfully fixing 101
of these tests, of which 58 were accepted by the time of
this submission. Only one pull request was rejected, while
the rest are still pending. 52 patches were directly accepted

without modifications, while 6 were accepted after changes
requested, such as moving the cleanup routine to an @After
method. These results demonstrate the practical applicability
and effectiveness of NIODebugger in detecting and repairing
flaky tests in real-world open-source projects.

In summary, this paper contributes the following:

« The first LLM-based agent for flaky test fixes, leveraging
the novel approach of using LLMs to provide guidance in
searching for relevant context during the fixing process.

o A Java implementation of NIODebugger that effectively
detects and fixes NIO flaky tests. The tool is published
on Maven Central.

o A framework that incorporates dynamic analysis during
the detection phase, enabling the detection and fixing of
flaky tests to occur within a single lifecycle.

o A dataset comprising previously unidentified NIO flaky
tests found in popular open-source projects, along with
their corresponding auto-generated patches produced by
NIODebugger, if applicable.

II. RELATED WORK
A. NIO flaky tests

The sole study on non-idempotent-outcome (NIO) flaky
tests [30] conducted a comprehensive analysis across open-
source projects, identifying a total of 223 NIO Java tests.
Utilizing the iDFlakies tool [18] tailored for detecting order-
dependent (OD) flaky tests, the study facilitated the detection
of Java NIO tests by test repetition within a single execution.
The study also manually fixed the majority of the identified
tests. Despite its significant contribution, the study faced two
notable limitations:

o Unspecialized Detector with Limited Accessibility: Its
detector, derived from modifications to the existing iD-
Flakies tool, is restricted to supporting JUnit 4 and lacks
the code conciseness and optimal efficiency needed for
NIO test detection. Besides reporting possible NIO tests,
it does not produce further information for debugging.

o Manual Fixes: All test fixes were performed manually,
demanding in-depth understanding of the source code
and consuming significant time resources. Previous study
shows that a fix to one NIO test usually requires at least
an hour from multiple authors [30].

These limitations call for a more specialized and accessible
solution to the mitigation process for NIO tests.

B. LLM-Based Flaky Test Fixing Techniques

Though there is no previous work that fixes NIO flaky
tests automatically, LLM-based techniques have achieved
state-of-the-art results in addressing other categories of flaky
tests. FlakyDoctor [39] presents an approach that directly
queries LLMs to fix flaky tests by providing error mes-
sages from failed test runs. FlakyDoctor is robust at fix-
ing order-dependent (OD) and implementation-dependent (ID)
tests (tests making false assumptions on underdetermined
APIs) [42]. It extracts these error messages from executions of
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the ID test detection tool NonDex [19] or the OD test detection
tool iDFlakies [18]. Although the FlakyDoctor framework
could potentially be extended to resolve NIO tests, its current
approach is limited for 3 major reasons. Firstly, FlakyDoctor
only includes the code of the flaky test method when prompt-
ing the LLM, and this does not generalize well to fixing NIO
tests, which often require invoking custom cleaner methods
defined in main classes. Secondly, it treats the failure message
of a test as constant. While this approach aligns with most
other types of flaky tests, it may not accurately capture the
behavior of NIO tests. For instance, consider an NIO test that
increments a static variable initialized at 0 and then asserts it
to be 1. In successive test runs, this test may yield different
error messages (e.g., "expected:<1> but was:<2>” and
“expected:<1> but was:<3>"). The variability in error
messages across successive runs provides valuable insights for
LLMs to understand errors stemming from the accumulation
of state pollution, including incremented counters, retrieval
of different objects from the head of a collection, and other
factors. Furthermore, given the extensive research on ID and
OD flaky tests, FlakyDoctor’s zero-shot architecture has shown
promising results. However, the landscape differs for NIO
tests, with only one previous study conducted in 2022.

FlakyFix [40] introduces an innovative framework that
leverages neural networks to predict fix categories before
utilizing LLMs to address flaky tests. The authors use publicly
reported flaky tests from the IDoFT [43] dataset to generate
labeled datasets for 13 heuristically defined fix categories.
They train a model to predict the fix category using the flaky
test code before directly employing LLMs to fix the test. While
FlakyFix could also potentially be extended to include NIO-
related fix categories, its effectiveness is also limited by its
reliance solely on test code for prompting and its omission of
valuable information from stack traces.

C. LLM-Based Agents

LLM-based agents represent a new line of research in
automated program repair (APR). This approach augments the
LLM into an agent capable of autonomously planning and
executing actions to fix bugs by invoking suitable tools or
APIs. It leverages the LLM’s ability to understand the root
cause of issues and effectively retrieve context. RepairAgent
[36] is the first work to address the program repair challenge
using an LLM-agent-based technique, applied to the De-
fects4J [44] dataset. AutoCodeRover [38] introduces an LLM-
agent-based approach for resolving pending GitHub issues to
autonomously achieve program improvement. FixAgent [37]
proposes the first automated, unified debugging framework
via LLM agent synergy, where two LLM agents act as a bug
localizer and program repairer. These agents are prompted to
explicitly track key variables at critical points in the buggy
program and discuss how such tracking guides their task com-
pletion. Additionally, they help construction of the program
context concerning its specifications and dependencies.

There is no agent-based approach in the field of flaky test
repair. This paper is the first to incorporate such a design to
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Fig. 2: NIODebugger Architecture

glean source code that can inspire patching NIO tests.

III. APPROACH

Figure 2 provides an overview of NIODebugger, a three-
phase framework designed to tackle non-idempotent-outcome
(NIO) flaky tests by an LLM-based agent. In the detection
phase, NIODebugger reruns tests within the same environ-
ment to pinpoint potential NIO tests while simultaneously
performing dynamic analysis to capture essential information
useful for debugging. In the exploration phase, NIODebugger
combines the identified test code with dynamic analysis data
and consults an LLM for guidance on locating relevant source
code. This equips the LLM with code-extracting techniques,
enabling it to retrieve context necessary for rectifying NIO
tests. In the fixing phase, NIODebugger gathers the pertinent
source code as directed by the previous phase and utilizes
an LLM to generate patches. Finally, an optional reflection
phase is available to iteratively refine the patch based on
previous results. This approach effectively addresses NIO test
flakiness by leveraging dynamic analysis insights, the gathered
information, and a one-shot learning example.

The majority of flaky tests identified in the previous
study [30] originate from open-source Maven Java projects,
reflecting Maven’s status as the preferred build tool for large-
scale software applications due to its robust dependency man-
agement and build handling capabilities. A recent study [45]
highlights that over 76% of Java developers use Maven for
their builds. Similarly, JUnit is widely adopted, with approx-
imately 85% of Java developers using it as their unit testing
framework, according to a recent survey [46]. In light of these
trends, we developed NIODebugger as a command-line plugin
available on Maven Central, specifically designed to detect and
address JUnit NIO tests in Maven Java projects. However,
the NIODebugger technique is not limited to Java, Maven,
or JUnit. The three-phase workflow and LLM agent can be
generalized to support other programming languages, build
tools, and testing frameworks. By customizing the detection
phase to be framework-specific and tailoring the exploration
and fixing phases to be language-specific, NIODebugger can
be adapted to a wide range of environments.
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Algorithm 1: NIO Flaky Tests Detection and Dynamic
Analysis

Inputs: Project P, Number of Reruns numReruns
Output: Possible NIO Flaky Tests possible NIO Tests, Other Flaky Tests
otherFlakyTests, Dynamic Analysis Output
dynamicAnalysisLog
1 firstRunResult, rerunResults < {};
2 rerunStacktraces, rerunExtralnfo < {};
3 possibleNIOTests, otherFlakyTests < 0;
4 allTests < findAllTests(P);
s foreach t € allTests do

6 runner < createlsolated TestRunner(t);
7 env < createlsolatedEnvironment(t);
8 result < runTest(runner, env, t);
9 firstRunResult[t] « result;
10 rerunResults[t] < [1;
1 rerunStacktraces[t] < [1;
12 rerunExtralnfo[t] < [1;
13 for i < 1 to numReruns do
14 result, extralnfo +—
runTest With ExtralnfoCollector(runner, env, t);
15 rerunResults[t]. append (result);
16 rerunExtralnfo[t].append(extralnfo);
17 if result = fail then

stacktrace < getStackTrace(env);
rerunStacktraces[t].append(stacktrace);

18
19

20 foreach t € allTests do

21 if (firstRunResult[t] = pass) A (Vresult €
rerunResults[t], result = fail) then

2 | possibleNIOTests < possibleNIOTests U {t};

23 else if Jresultl, result2 €
(firstRunResult[t] U rerunResults[t]), resultl # result2
then

24 | otherFlakyTests < otherFlakyTests U {t};

25 foreach t € possible NIOTests do

26 runner < getlsolated TestRunner(t);

27 env < createCleanlsolated Environment(t);

28 result < runTest(runner, env, t);

29 if result = fail then

30 possibleNIOTests < possibleNIOTests \ {t};

31 otherFlakyTests < otherFlakyTests U {t};

2 continue;

33 for i < 1 to numReruns do

34 result < runTest(runner, env, t);

35 if result = pass then

36 possibleNIOTests < possibleNIOTests \ {t};

37 otherFlakyTests < otherFlakyTests U {t};

38 break;

39 dynamicAnalysisLog <
log(possible NIOT ests, rerunStacktraces, rerun Extralnfo);
40 return possibleNIOTests, otherFlakyTests, dynamicAnalysisLog;

A. Detection Phase

To address the key limitations of the detector used in the
original study of NIO flaky tests [30], which lacked useful
debugging information, we developed a specialized workflow
for detecting NIO tests. Algorithm 1 illustrates our systematic
approach involving dynamic analysis. Initially, NIODebugger
identifies all tests in a given project. For each test, it first
creates an isolated testing environment and runs the test once,
recording this initial result. It then enters a loop to rerun the
test multiple times within the same environment. During each
rerun, NIODebugger captures the result of the test execution. If
a test fails, it retrieves and stores the corresponding stack trace.
Regardless of the test’s result, additional runtime information,
such as logging outputs and warnings, is also collected. After
all reruns are completed for each test, NIODebugger assesses
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Fig. 3: Java Implementation of Detection Phase

whether the test qualifies as a possible NIO flaky test. This
determination is based on the observation that if a test passed
on the first run but consistently failed in subsequent reruns, it
is flagged as a potential NIO flaky test. For each test flagged
as a potential NIO flaky test, NIODebugger re-creates a clean
isolated environment and reruns the test to confirm whether it
consistently exhibits non-idempotent behavior. The detection
phase concludes by logging the identified NIO tests along with
the results of the dynamic analysis.

In addition, we describe our efforts to integrate the algo-
rithm seamlessly with the modern Java ecosystem. In Maven
projects, the Maven Surefire Plugin [47] is commonly used
during the build lifecycle to execute JUnit tests. However,
Surefire automatically spawns and terminates forked Java
Virtual Machines (JVMs) for testing, making it challenging
to rerun tests in the same JVM. To address this limitation for
Maven Java projects, the Java implementation of the detection
phase initializes a custom isolated class loader to load all test
classes, necessary artifacts for test execution, and the JUnit test
engine. Subsequently, it employs a class-loader-isolated JUnit
runner capable of rerunning tests within the same JVM. While
the workflow is tailored to Java, its underlying principles can
be adapted to other programming languages.

Figure 3 shows the workflow of the detection phase for
JUnit Java tests. Specifically, the core detection architecture
includes four major components:

1) Isolated Class Loader: To ensure a highly streamlined
environment that includes only the essential dependencies nec-
essary for repeated unit test execution, the isolated class loader
minimizes the number of dependencies. The class loader
provides a concise environment encompassing test classes,
essential runtime dependencies, specialized unit-testing arti-
facts, NIODebugger’s proprietary classes, and the entire Java

1017



standard library. Notably, the bootstrap class loader in Java
versions 9 and later exclusively loads core Java classes from
the runtime environment, such as those within the java.lang
package. However, it does not load packages like java.sqgl
which require the -—add-module flag during JVM launch. To
ensure comprehensive access to Java SE platform APIs, in-
cluding JDK-specific runtime classes, we configure the parent
of our isolated class loader to be the platform class loader. We
implement the isolated class loader as a URLClassLoader,
facilitating the loading of artifacts via path URLs.

2) Class-Loader-Isolated Test Runner: With the class
loader prepared, the runner can rerun specified test classes or
methods, or the entire test suite by default. Using reflection,
the runner invokes the JUnit launcher factory’s creator method
from within the isolated class loader. The request builder,
which accepts designated test classes or methods identified by
JUnit discovery selectors, is passed to the test engine launcher.
The launcher activates the appropriate JUnit Engine, which
processes the request and orchestrates the repetitive execution
of tests. The runner employs a custom logger to capture useful
test information for debugging. During this process, the test
runner reruns unit tests, examines their outcomes, and flags
tests that pass initially but fail in subsequent runs.

3) Custom Summary Generating Listener: NIODebugger
uses an extension of JUnit’s summary generating listener to
provide a comprehensive overview of test execution. While
the JUnit listener only captures the names of failed tests, our
custom listener maintains a map of test statuses, updated with
each test’s completion. This map ensures that the runner has
information about tests that pass initially but fail later, and also
supports the extraction of additional dynamic information such
as stack traces and warnings.

4) Executor: An executor operates on top of the three
components described above. Implemented as a Maven Mojo,
it is responsible for executing tasks within the Maven build
process. Our rerun execution Mojo identifies all tests slated
for execution, processes command-line inputs, retrieves URLSs
for the isolated class loader, and loads the class-loader-isolated
test runner class into the customized class loader. Finally, it
invokes the JUnit runner method via reflection.

B. Exploration Phase

The exploration phase of NIODebugger is a two-step pro-
cess designed to utilize our LLM-based agent for NIO flaky
tests. Initially, it performs static analysis on the results from
the detection phase to gather the most relevant information for
each test. Subsequently, the relevant information, along with
the test code, is used to query an LLM for suggestions on
relevant code that may aid in debugging. This phase can be
easily generalizable to any programming languages and testing
frameworks. Part of Figure 4 illustrates the overall workflow
of the exploration phase, while Algorithm 2 details the specific
process of interacting with an LLM-based agent to generate
instructions for relevant source code extraction.

Specifically, for each test identified as a potential NIO flaky
test during the detection phase, NIODebugger extracts error

Algorithm 2: Exploration Phase of NIODebugger

Inputs: Project P, Possible NIO Flaky Tests possible NIO Tests, Dynamic
Analysis Log dynamicAnalysisLog, Number of Reruns
numReruns

Output: Instructions for Relevant Source Code Extraction instructions

1 instructions, errorLineNums, errorLines < {};

2 stackTraces, extralnfo, reduced TestCode <+ {};

3 foreach ¢t € possibleNIOTests do

4 testFileCopy < collectTestFile(t, getCodeBase(P));

5 errorLineNums[t] < [];
6 errorLines[t] < [1;
7 for i < 1 to numReruns do
8 errorLineNum <—
getStackTrace(dynamicAnalysisLog, t);
9 errorLineNum < errorLineNum.getErrorLineNum(i);
10 errorLineNums[t].append(errorLineNum);
1 foreach lineNum € errorLineNums[t] do

12 errorLine < extractLine(testFileCopy, lineNum);
13 errorLines[t].append(errorLine);
14 foreach method € getAliTestMethodsFromFile(testFileCopy)
do
15 if method.getName() # t.getName() then
16 testFileCopy <
removeMethod(testFile Copy, method);

17 reduced TestCode[t] < testFileCopy;

18 extralnfo(t] < parseExtralnfo(dynamicAnalysisLog, t);

19 stackTraces[t] < [1;

20 for i < 1 to numReruns do

21 stackTrace < getStackTrace(dynamicAnalysisLog, t);

22 stackTrace <
stackTrace.extractStackTraceAtRerunNum/(i);

23 stackTraces[t].append(stackTrace);

24 generalDescription < getGeneralDescriptionOfNIO Tests();
25 foreach ¢ € possibleNIOTests do

26 prompt < buildResponseFormatConstrained Prompt(
t, errorLines(t], stackTraces(t], reduced TestCode(t],

27 extralnfo, generalDescription);

28 instruction <— queryLLM (prompt);

29 instructions|t] < instruction;

30 return instructions;
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Fig. 4: Exploration and Fixing Phases of NIODebugger

line numbers from the dynamic analysis log and parses the
corresponding test file to locate these lines. It then creates a
reduced version of the test file, adhering to the principle that
unit tests should be independent. To minimize noise and man-
age context length, NIODebugger removes other test methods
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while retaining helper methods, fields, and classes within the
file. Additionally, it includes inherited fields and methods
from superclasses, resulting in a streamlined yet informative
codebase for each NIO test. Meanwhile, NIODebugger parses
extra information from the dynamic analysis log, including
stack traces from various reruns. All collected data, along with
a general description of NIO tests, is fed into an LLM agent,
which then decides to extract relevant code from the repository
that assists in fixing the NIO test.

To query the LLM agent, we construct a response-format-
constrained prompt, which includes explicit instructions on
the desired structure and content of the LLM’s response. The
prompt includes guidelines or templates which the LLM must
adhere to in generating its response, thereby ensuring that
the output is consistent with the specified format to invoke
a parameterized workflow. The response-format-constrained
prompt not only contains test-specific information, but also
includes a section that specifies all custom source-code-
searching parameterized workflows from which the LLMs
can choose, detailing the inputs to be passed into these
workflows and the format of the LLM response to ensure it is
automatically parsable for invoking such workflows. Figure 5
shows the format of the response-format-constrained prompt.
Below is a detailed overview of all parameterized workflows:

1) Find Code of a Specific Method: This workflow is
used when the LLM identifies that a method might be,
or is associated with, a latent polluter or cleaner, and
requires access to the method’s implementation for ver-
ification or additional relevant information. NIODebug-
ger requires the LLLM to respond Find Method Code:
{className.methodName} in this scenario.

2) Find Code of a Specific Class: This workflow is
employed when the LLM determines that understanding
the implementation of a type as a whole is essential,
especially when it needs a comprehensive view of a
class’s potential fields that may be shared and polluted.
NIODebugger requires the LLM to respond Find Class
Code: {className} in this scenario.

3) Function Name Inference and Code Matching: Used
when the LLLM anticipates potential functions to clean up
states but does not know in advance which class defines
such methods. The LLM can then infer a function name
based on the desired functionality of state cleaning and
locate code for multiple functions with names similar to
the guessed name. This feature can also be utilized when
the LLM needs to explore a function that appears in the
code but does not know which class defines the func-
tion, such as in long call chains. NIODebugger requires
the LLM to respond Find Hypothesized Method:
{possibleMethodName} in this scenario.

4) Explore File With Similar Names: This workflow is
utilized when the LLM is unable to make a specific
decision at the class or method level and opts to ex-
plore source files whose names are similar to the file
containing the NIO test, potentially uncovering more

| General Description | Reduced Test Code

Response - Format -

Stacktraces and
Constraint - Prompt

Error Location

| | Extra Information | |

| have a non-idempotent test that always passes in the first run but fails in all repeated
runs in the same JVM. In other words, the test has side effects and “self-pollutes” the
state shared among test runs, so only the first run succeeds.

Here's the non-idempotent test *({test_name}}" that | have
@Test
public void t0() {//...}

Below is the error message in run #1:

Javaang AssertionError: expected:<I> but was:<2>
And the error occurs at this line:

assertEqualf( ...);

Below is the error message in run #2:

Java.lang AssertionError: expected:<1> but was:<3>
And the error occurs at this line:

assertEqualf ...);

... (and so on for all stack traces and error lines)

Extra information from dynamic analysis (log outputs, warnings, ...)

Based on the knowledge above, please decide:

If the test code contains enough information for fixing the non-idempotent test *t0",
please just answer ‘Directly Fixable in your response;

Otherwise, if you would like to explore the source code for one specific custom
method / constructor, please answer "Find Method Code:
{className.methodName}" (e.g., 'Find Method Code: {MyNIOClass.reset}") in
your response;

If you would like to explore the code for a specific custom class relevant to the test
code, please answer "Find Class Code: {className}" (e.g., ‘Find Class Code:
{MyNIOClass}') in your response;

If you want to explore all methods with names similar to a hypothesized name in any
possibly relevant classes, please answer "Find Hypothesized Method:
{possibleMethodName}" (e.g., 'Find Hypothesized Method: {resetDataSet}') in
your response;

If you generally need source code from more possibly relevant source files befare you
can make a decision, please answer "Find Relevant File".

Please just answer one of ‘Directly Fixable’, "Find Method Code:
{className.methodName}', 'Find Class Code: {className}", 'Find
Hypothesized Method: {possibleMethodName}’, or ‘Find Relevant File'. Do not
include any other text in your response.

Fig. 5: Response-Format-Constrained Prompt for Relevant
Source Code Exploration

insights. NIODebugger requires the LLM to respond
Find Relevant File in this scenario.

5) No Source Code Needed Beyond Reduced Test Code:
If the reduced test code contains enough information for
a fix, NIODebugger can skip further exploration of the
code base. NIODebugger requires the LLM to respond
Directly Fixable in this scenario.

C. Fixing Phase

The fixing phase of NIODebugger is follows instructions
from exploration phase to extract relevant source code infor-
mation and query an LLM for generating a final patch for
each test. Part of Figure 4 illustrates the architecture of the
fixing phase, while Algorithm 3 outlines the workflow of this
phase. It takes as input the maximum number of characters
allowed in the collected source code (to fit within the context
window), project source code, a set of all possible NIO tests,
and a dictionary of instructions from the exploration phase.
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Algorithm 3: Fixer Phase of NIODebugger

Inputs: Maximum number of characters allowed in collected source code n,
Project P, Set of all Possible NIO Tests possible NIO Tests,
Dictionary of instructions instructions

Output: Set of patches patches

fileCodeMap, classCodeMap, methodCodeMap, patches <+ {};

generalDescription <+ getGeneralDescriptionOfNIO Tests();

errorLines, stackTraces, extralnfo, reduced TestCode <+
getInfoFromPreviousPhases();

4 oneShotEzample < getOneShotExample();

5 foreach file € findAllSourceFiles(P) do

6 fileCodeMap|file] « extractCode(file);

7 AST < getAST(file);

8

9

woN =

foreach node € performDFS(AST) do
if isInstance(node, method) then
10 methodName < getFullPathMethodName(node);
1 methodCodeMap[methodName]
extractCode(file, methodName);
12 else if isInstance(node, class) then
13 className < getFullPathClassName(node);
14 classCodeMap[className] <
extractCode(file, className);

15 relevantSourceCode +—
16 foreach t € possible NIO Tests do

.
5

17 workflow, nameToSearch +
parselnstruction(instructions[t]);
18 if workflow = “Find Code of a Specific Method” then

relevantSourceCode <
methodCodeMap[nameToSearch];

"

20 else if workflow = “Find Code of a Specific Class” then

21 L relevantSourceCode < classCodeMap[nameToSearch];

22 else if workflow = “Function Name Inference and Code Matching”
then

23 distances < {};

24 foreach key € methodCodeMap do

25 distance <

ComputeLevenshteinDistance(nameToSearch, key);

26 distances.append((distance, key));

27 Sort distances by distance;

28 relevantSourceCode < {};

29 foreach _, key €
copyFromHead UntilGettingN Characters(distances, n)
do

30 L relevantSourceCode.append(methodCodeMap [key]);

31 else if workflow = “Explore File With Similar Names” then

3 distances <+ {};

33 foreach key € fileCodeMap do

34 distance <

ComputeLevenshteinDistance(nameToSearch, key);

35 distances.append((distance, key));
36 Sort distances by distance;
37 relevantSourceCode < {};
38 foreach _, key €
copyFromHead UntilGettingN Characters(distances, n)
do
39 | relevantSourceCode.append(fileCodeMap(key]);
40 prompt <
butldFizerPrompt(t, errorLines|t], stackTraces[t], extralnfo(t]
41 oneShotEzample, reduced TestCode[t], generalDescription,
42 relevantSource Code);
43 | patches[t] < queryLLM (prompt,n);

44 return patches;

In this phase, NIODebugger iterates over all project source
files, extracting their code and constructing an Abstract Syntax
Tree (AST) [48] for each file. By performing a Depth-First
Search (DFS) on the AST, NIODebugger identifies and stores
the code for each method and class. This step is specific to
the language used; for Java, we utilized JavaParser [49], but

similar functionality is available in other languages, such as
the ast module [50] for Python and Clang [51] for C++.

For each NIO test, NIODebugger parses the instruction from
the exploration phase to determine the required workflow.
NIODebugger retrieves the relevant source code from the
constructed maps when an exact match is found, or identifies
the most similar entries using the Levenshtein distance [52], a
common metric to map LLM-generated outputs to executable
tools in agent-based program repair [36]. The relevant source
code is then written unless the agent decides that no additional
source code is needed. Following the source code extraction,
the fixing phase synthesizes a comprehensive prompt for
each possible NIO test, including a general description of
NIO tests, the test method name, the reduced source code
with the test method, stack traces from multiple test reruns,
instructions for fixing NIO flaky tests, a one-shot example, and
additional information from previous phases. Additionally, the
fixer supports custom requirements for fix generation, such as
specifying “fix the method itself without adding setUp () or
tearDown () methods.” Figure 6 illustrates the final prompt to
query a patch. As the input test file is streamlined to exclude
other test methods, the patch contains only the relevant test
method and its associated helper methods or classes.

During post-processing, we provide the LLM with both the
original test file and the patch for one method, and prompt it
to generate a compilable version to replace the original file.
The separation between the fixer phase and code replacement
is based on the intuition that the fixer should not be exposed to
extraneous code (e.g., other test methods) when formulating a
patch for one test. Additionally, this approach allows optional
manual verification and code patching, potentially reducing the
cost of invoking the LLM.

D. Optional Reflection Phase

NIODebugger supports iterative refinement as an optional
step, which was employed in our evaluation. If the fixer fails to
produce compilable code or to resolve test non-idempotency
(i.e., the detection phase still reports non-idempotency after
patching), the agent re-performs the exploration and fixing
steps. During this phase, the prompt is enhanced with the
previous parameterized workflow decisions, the generated
patch, and new execution results. While we do not make this
step mandatory due to the high computational and monetary
costs associated with LLMs, we have configured our Maven
plugin to automatically incorporate previous run information
into the exploration and fixing phases, whenever available.
Additionally, we offer a fully automatic setup that includes up
to three reflection runs, which the user can choose to enable.

IV. EVALUATION

To evaluate the effectiveness of NIODebugger, we investi-
gate the following research questions:
RQ1: Effectiveness, Generalizability, and Baseline Compar-
isons in Fixing NIO Tests: How effective is NIODebugger in
generating patches for NIO tests that preserve the original test
logic while eliminating non-idempotency? How generalizable
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General Description

| Reduced Test Code

| One - Shot Example

Stacktrace and
Error Location

| Extra Information

Relevant Source Code

| Fixer Prompt |

| have a non-idempotent test that always passes in the first run but fails in all
repeated runs in the same JVM. In other words, the test has side effects and “self-
pollutes” the state shared among test runs, so only the first run succeeds.

An example of a non-idempotent test is

void tl() { assertEquals(w, 0); w = 1; }

and a fix is to reset 'w' to 0",

Now here's the actual non-idempotent test *{{test_name}}" that | have:

@Test
public void testl() {//....}

Below is the error message in run #1:

Java lang AssertionError: expected:<I> but was:<2>
And the error occurs at this line:

assertEquall(...);

Below is the error message in run #2:

Java lang AssertionError: expected:<I> but was:<3>
And the error occurs at this line:

assertEquall(...);

... (and so on for all stack traces and error lines)

Extra information from dynamic analysis (log outputs, warnings, ...)

Below is part of the main code relevant to the test class - it may contain methods to
clean up polluted states:

public class SourceClass{//...}

Please directly fix the non-idempotent test *t1°, and answer with only Java code
of the fixed test. Do not include any explanation.

Fig. 6: Prompt for LLM to Generate a Patch

is its effectiveness across different LLMs? Is NIODebugger
more effective than existing techniques that could potentially
be adapted to address NIO tests?

RQ2: Contributions to Real-World Software Development:
What is the attitude of developers working on large-scale,
popular projects toward patches generated by NIODebugger?
RQ3: Contributions of Key Components in NIODebugger:
What is the extent of the contribution of the key components
in the LLM-based agent?

A. Evaluation Setup

We used the GitHub API query to obtain a list of popular
Java repositories, sorted by the number of stars, with a push
within a year. From the query results, we selected the top 300
repositories and filtered them to retain only those containing
a pom.xml file in the root directory. This process resulted in
a final list of 242 repositories, and we successfully executed
NIODebugger on 174 of them. The remaining projects failed
due to Maven build issues or test hang-ups (unrelated to
NIODebugger), or lack of support for Java 9+ (a prerequisite
for running NIODebugger).

Due to the time-consuming nature of initializing a separate
JVM for each test class or method in large projects, we
executed the detection process at the module granularity,

using numRerun = 3—which spawns one JVM to execute

the module’s test suite four times consecutively. Note that this
method may overlook some NIO tests whose polluted states
are resolved by preceding methods. Our script identified 192
potential NIO flaky tests across 21 projects. After that, we
reran the detection phase of NIODebugger at the reported test
granularity with numRerun = 10 to verify non-idempotent
behavior. We failed to observe non-idempotency in 17 of the
192 tests, and found they were actually order-dependent. For
example, if the original order of a test suite is t1, t2, then
if £2 modifies a state used by t1, t1 may pass in the first run
but fail afterwards. Another 3 of the reported tests were found
to be nondeterministic; they passed in the initial run but failed
in subsequent reruns by chance and did not exhibit the same
behavior when rerun in isolation. Finally, we confirmed 172
possible NIO tests across 20 projects.

Our goal is to evaluate NIODebugger on all the 172 tests. In
line with existing LLM-agent-based program repair techniques
[36], [37], [38], we selected GPT-3.5 Turbo and GPT-4 as
the two proprietary, API-based state-of-the-art LLMs for the
exploration, fixing, and optional reflection phases. To evalu-
ate NIODebugger’s generalization capability across multiple
LLMs, including open-source models, we also included two
top-performing instruction-tuned open-source models, namely
DeepSeek-Coder-33B-Instruct [53] and Qwen2.5-Coder-32B-
Instruct [54], identified from Aider’s Code Editing Leader-
board [55], which ranked models for their ability to generate
code edits seamlessly integrated into existing codebase. Note
that we selected the instruction-tuned coder variants to address
both instruction-following needs during the exploration phase
and patch generation in the fixing phase.

Using each LLM, we ran the exploration and fixing phases
to generate solutions for each NIO test, also allowing up to
3 reflection runs. We conducted parameter tuning on the tem-
perature setting for each model, utilizing the 149 previously
fixed NIO tests recorded by IDoFT [43]. The tuning process
began with greedy decoding (temperature = 0) and increased
temperature by 0.1 in each iteration, up to a maximum of 2.

Importantly, the 149 tests used for parameter tuning were
entirely disjoint from the 172 tests used for evaluation, which
comprised newly detected, previously unknown tests, ensuring
no data contamination. The optimal temperature values found
were 0.7 for both GPT models, 0.5 for DeepSeek-Coder-
33B-Instruct, and 0.6 for Qwen2.5-Coder-32B-Instruct. For
all other parameters, we adhere to the default settings recom-
mended in their documentation as best practice. Additionally,
we allowed up to three iterations in the reflection phase,
enabling the agent to incorporate insights from the execution
results of previous patches. The experiment was conducted
using Java 17 on Ubuntu 22.04.3.

B. RQI: Effectiveness, Generalizability, and Baseline Com-
parisons in Fixing NIO Tests

We ran the aforementioned experiment on the 172 detected
NIO tests using each of the four LLMs. A patch is considered
correct if it satisfies the following conditions: (1) it passes the
detection phase with 50 reruns, (2) it does not cause any other
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test to fail, and (3) it does not alter the essential test logic
upon manual examination, confirmed by an experienced Java
developer after reading the patches line by line. All experiment
scripts and generated patches are publicly available in the
artifact repository for verification.

To compare the results against the baselines, we duplicated
each detected NIO test to introduce test order dependen-
cies and ran iFixFlakies and ODRepair—two non-
LLM-based approaches designed to fix order-dependent tests
without using LLMs. Table I presents an overview of the
results. Among the four LLMs integrated with NIODebugger,
NIODebugger-GPT-4 achieved the best performance, produc-
ing correct patches for 101 tests (58.72%), far surpassing the
other models. NIODebugger-GPT-3.5-Turbo ranked second,
also outperforming the open-source LLMs by a wide mar-
gin. When integrated with open-source LLMs, NIODebugger-
Qwen2.5-Coder-32B-Instruct and NIODebugger-DeepSeek-
Coder-33B-Instruct performed less effectively.

NIODebugger-GPT-3.5-Turbo produced unique fixes for
five tests that were not addressed by other LLMs, while
all patches generated by the two open-source LLMs were
subsumed by GPT-4 patches. NIODebugger-GPT-4 signif-
icantly outperformed non-LLM baseline approaches, and
NIODebugger-GPT-3.5-Turbo also demonstrated superior per-
formance. iFixFlakies failed to fix any tests, as it relies on
“state cleaner tests” in the same test suite, which were absent
for the 172 NIO tests in our study. ODRepair fixed some tests
but was less effective than GPT-based NIODebugger models,
since it relies on correctly identifying the polluted state and
using Randoop to generate potential cleaner tests. Moreover,
Randoop-generated tests tend to be verbose, poorly organized,
and filled with low-level method calls and generic variable
names, hence the patches are likely less natural.

Upon further inspection, we observed that while both
GPT models successfully followed the exploration prompts
for all tests, the open-source models struggled to adhere to
response-format-constrained prompts. For instance, Qwen2.5-
Coder-32B-Instruct occasionally responded directly with
Find Method Code: {className.methodName}
without substituting className.methodName with an
actual method name. It also sometimes elaborated on the
potential problem instead of directly deciding the correct
workflow. Similarly, DeepSeek-Coder-33B-Instruct frequently
attempted to fix the test directly during the exploration phase.
Notably, DeepSeek-Coder-33B-Instruct failed to generate
responses in the correct format in the exploration phase for
89 tests, while Qwen2.5-Coder-32B-Instruct also failed for 63
tests. Such limitations fall outside the scope of NIODebugger
but could be mitigated by future advancements in open-source
LLMs.

To mitigate the non-determinism of LLMs at a higher
temperature, we repeated the experiment twice more using
the same setup and parameters as described in the previous
section for both NIODebugger-GPT-4 and NIODebugger-GPT-
3.5-Turbo. We run only the GPT variants, because they have a
much better performance than open-source models, and have

no GPU costs. NIODebugger-GPT-4 achieved 89 and 103
correct patches, compared to 101 in the original experiment,
while NIODebugger-GPT-3.5-Turbo achieved 74 and 70 cor-
rect patches, compared to 68 in the original experiment. All six
runs with these two proprietary models showed performance
exhibiting substantial improvement over the baselines.

Overall, our findings suggest that NIODebugger, when
integrated with GPT models, achieves state-of-the-art perfor-
mance, outperforming baseline techniques. The poorer perfor-
mance of open-source models aligns with prior work on LLM-
based flaky test repair [39] and general program repair [37],
[38], where GPT models consistently outperform open-source
LLMs. We present a detailed breakdown of the performance of
our best-performing variant, NIODebugger-GPT-4, in Table II.
The table includes the following columns: the project slug,
the commit SHA used in our experiments, the count of non-
commented, non-blank (NCNB) code lines in all Java source
files, the total number of tests evaluated during the detection
phase, the total number of non-commented test assertions
across the entire test suite, the number of NIO tests identified
by NIODebugger’s detection phase, the number of NIO tests
successfully fixed by NIODebugger-GPT-4, and the number
of fixes that have already been accepted via pull request and
merged into the project’s main codebase.

TABLE I: Performance of NIODebugger Variants & Potential Baselines

Correct Patches

101 (58.72%)

NIODebugger Variant or Baseline

NIODebugger-GPT-4
NIODebugger-GPT-3.5-Turbo 68 (39.53%)
NIODebugger-Qwen2.5-Coder-32B-Instruct 27 (15.69%)
NIODebugger-DeepSeek-Coder-33B-Instruct 20 (11.63%)

59 (34.30%)
0 (0%)

iFixFlakies

C. RQ2: Contributions to Real-World Software Development

To assess the developer’s attitude towards NIODebugger in
real-world software development, we submitted pull requests
for all 101 patches generated by our best-performing variant,
NIODebugger-GPT-4. We made only minor adjustments to
ensure the patches passed Checkstyle, without making logical
modifications. Of these, 58 patches were accepted, 1 was
rejected, and the remaining 42 patches are still pending.

1 public void testDeployClass() {

(]

3 vertx.deployVerticle(//...).onComplete (onSuccess (
deploymentId -> {
4 ReferenceSavingMyVerticle.myVerticles.forEach(

myVerticle —-> {
assertEquals (deploymentId, myVerticle.deploymentID)

wn

assertEquals (config, myVerticle.config);
assertTrue (myVerticle.startCalled);
P
1)
VI

=R = - B =}

Fig. 7: DeploymentTest.java in eclipse-vertx/vert.x
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TABLE II: Detailed View of Projects with NIO Tests and Fixer Performance of NIODebugger-GPT-4

Project SHA NCNB Lines  Total Tests  Test Assertions  NIO Tests  Correct Patches ~ Accepted Patches
apache/dubbo 20f252d 287009 6415 13555 34 19 19
apache/hadoop ecf665¢ 1929672 10874 78983 31 14 7
kiegroup/jbpm 1558f0d 295347 3675 19965 23 11 0

sismics/docs afa7885 24600 74 999 21 17 17
apache/cxf eea3c9b 695144 9528 30777 15 3 3
alibaba/COLA 1a8c433 11654 69 167 12 11 0
brianfrankcooper/YCSB ce3eb9c 25434 76 733 12 12 0
apache/wicket 58d953e 220299 2811 10727 6 5 5
spring-cloud/spring-cloud-netflix ~ 2a8b7ed 12259 235 461 4 1 1
ebean-orm/ebean d034821 222188 1069 11791 2 2 2
stleary/JSON-java 8983cab 14263 647 1561 2 2 2
apache/rocketmq b37d283 242774 1676 7652 2 1 1
apache/tika £78dc99 173227 1982 10305 1 1 0
apache/tinkerpop 8bb5d16 172540 25269 14855 1 1 1
eclipse-vertx/vert.x 0eb288b 140880 4849 9596 1 1 0
apache/incubator-kie-optaplanner ~ 8c2fble 208565 3963 10910 1 0 N/A
Red5/red5-server eb75c16 64046 170 434 1 0 N/A
spring-projects/spring-retry 9442435 11468 387 903 1 0 N/A
stanfordnlp/CoreNLP 2460079 619842 1459 7035 1 0 N/A
winder/Universal-G-Code-Sender ~ 445c¢d19 92947 750 2514 1 0 N/A

Of the 58 patches accepted, 52 were accepted directly, while
6 required changes before acceptance. In 5 of these 6 cases, the
logic of the patches was approved, requiring only minor adjust-
ments. These adjustments included adding a try - finally
block or altering when state cleanup occurs within the test. The
other change suggested by the developer involved making a
non-idempotent function under test idempotent directly, thus
addressing issues outside the scope of the test method.

Particularly noteworthy is that the rejected pull re-
quest [56] does not stem from incorrectness of the
patch generated by NIODebugger. Figure 7 illustrates our
patch. Specifically, the patch deploys a verticle to the
global set ReferenceSavingMyVerticle.myVerticles
but does not clean up after deployment. Consequently,
in the second execution, myVerticles still contains a
verticle from the previous run with a different deploy-
ment ID than the currently deployed one. This discrep-
ancy causes the assertion assertEquals (deploymentId,
myVerticle.deploymentID) to fail in one of the iterations
of the forEach loop. In this scenario, the developer acknowl-
edges the patch’s correctness but rejects our PR because they
do not consider such state pollution hazardous.

D. RQ3: Contributions of Key Components

This section examines the contribution of two key com-
ponents of NIODebugger through an ablation study on
NIODebugger-GPT-4, the best performing variant. We isolate
source code extraction used for context exploration and dy-
namic analysis used during the detection phase and perform an
ablation study. Table III presents the results, where “RSCE”
denotes relevant source code extraction and “DA” refers to
dynamic analysis. Each row indicates the number of correct
patches generated.

It is evident that both dynamic analysis and relevant source
code extraction are crucial for of NIODebugger, while relevant
source code extraction is more indispensable.

TABLE III: Ablation Study of NIODebugger-GPT-4

Correct Patches

26 (15.12%)
42 (24.42%)
55 (31.98%)
101 (58.72%)

Technique

NIODebugger-GPT-4 without RSCE & DA
NIODebugger-GPT-4 without RSCE
NIODebugger-GPT-4 without DA
NIODebugger-GPT-4

We provide an example illustrating how NIODebugger can-
not generate a patch without relevant source code extraction.
Figure 8 depicts an NIO test inapache/rocketmg. The test
fails in subsequent runs because it registers a NothingFilter
without unregistering it. In the repeated run, an error occurs
when registering the filter since a filter with the same iden-
tity already exists. Without relevant source code extraction,
although the fixer LLM identifies the source of state pol-
lution and guesses that a method unRegister () exists in
FilterFactory, it fails to recognize that unRegister ()
requires its parameter as a filter-specific string, namely
"Nothing" as defined in NothingFilter. As a result, the
fixer mistakenly extracts new NothingFilter() as a local
variable and passes it to unRegister (), resulting in a com-
pilation error. Conversely, the relevant source code extraction
rountine guides the exploration of the FilterFactory class,
enabling a fix accepted by the developers [57].

public void testRegister() {
FilterFactory.INSTANCE.register (new NothingFilter());
// Other logic

o W —

Fig. 8: FilterSpiTest.java in apache/rocketmq

For a more detailed overview, Table IV presents the number
of tests with which each agentic workflow is utilized, as well as
the number of NIO tests successfully fixed when the workflow
is employed by our best-performing variant, NIODebugger-
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GPT-4. “Find Class Code” was the most common workflow,
followed by “Find Method Code”. Both of the workflows
lead to a significant portion of correct patches. Less frequent
workflows, such as “Find Relevant File” and “Find Hypothe-
sized Method”, also contributed to correct fixes. Additionally,
NIODebugger-GPT-4 decides that no additional code is needed
in 34 cases, resolving 23 of them.

TABLE IV: Summary of Workflow Usage and Effectiveness

Workflow # Tests Invoked  # Correct Patches
Find Class Code 75 48
Find Method Code 46 23
Directly Fixable 34 23
Find Relevant File 13 5
Find Hypothesized Method 4 2

We also provide an example where NIODebugger can-
not generate a patch without dynamic analysis. Figure 9
shows an NIO test in the hadoop project. The method
registerSubCluster () registers a call with a specified
latency, while getLatencySucceededCalls () returns the
mean latency of all registered successful calls. Starting from
a fresh state, the assertion at line 6 passes in the first run
with a mean latency of 100, as only one call with latency
100 (at line 5) is recorded before the assertion. However,
in the second execution of the test, the recorded history
includes two previous calls (with latencies of 100 (at line 5)
and 200 (at line 9)) from the first execution, and one call
with latency 100 from the second execution. Consequently,
the getLatencySucceededCalls () method in the assertion
returns a mean latency of 133.33 (mean of 100, 200, and 100)
in the first rerun, followed by 125 and 120 in subsequent runs.
The changing error message provides valuable insights into
state pollution accumulation. While NIODebugger without
dynamic analysis generates an incorrect patch that assumes
getLatencySucceededCalls () is simply incremented by
100 after the registerSubCluster (100) call, it success-
fully generates a patch for an approved PR [58] when dynamic
analysis is enabled, as shown in Figure 9. This example
underscores NIODebugger’s capability to address complex
NIO tests by analyzing stack traces from multiple test runs.

—

public void testSuccessfulCalls() {

2 long totalGoodBefore =
FederationStateScoreClientMetrics.
getNumSucceededCalls () ;

4 Al

5 goodStatesStore.registerSubCluster (100);

6 - assertEquals (100, erationStateScoreClientMetrics.
getLatencySucce 11s());

7

8 S

9 goodStatesStore.registerSubCluster (200);

10 e

11}

Fig. 9: TestFederationStateStoreClientMetrics.java in apache/hadoop

V. THREATS TO VALIDITY

We identify several potential threats to the validity of our
approach and evaluation, and describe how we addressed each:

1) Data Leakage: Our evaluation includes closed-source
GPT models with unknown training data, which may
include the projects we analyze. Although we evaluate
NIO tests with no prior fixes, the model’s prior exposure
to the codebase might lead to misleadingly high perfor-
mance. However, the ablation study in RQ3 addresses
this concern by showing that the success rate of GPT-4-
generated patches decreases significantly when dynamic
analysis or relevant source code extraction are removed.

2) Validity of Patches: There is a risk that patches generated
by NIODebugger may not be ideal. To mitigate this, we
submitted pull requests (PRs) for all patches. Out of 59
patches reviewed by developers, 58 were accepted. The
one rejection was not due to incorrectness but rather the
developer’s reluctance to address state pollution.

3) Scalability: Our evaluation is limited to Java projects,
raising concerns about the applicability to NIO tests
in other programming languages. We address this by
discussing the language-specific aspects of our frame-
work and explaining why extending support to multiple
languages is practical.

4) Non-determinism: The LLM response is inherently non-
deterministic, particularly due to the higher temperatures.
To mitigate this, we repeated the experiment twice for the
two best-performing variants and observed consistently
better performance than the baselines.

VI. CONCLUSION

In conclusion, this paper presents NIODebugger, a pio-
neering framework that effectively addresses non-idempotent-
outcome (NIO) flaky tests using an LLM-based agent. By
integrating dynamic analysis during detection phase and agent-
based relevant source code extraction, NIODebugger demon-
strates strong performance in detecting and repairing NIO
flaky tests in popular open-source projects, with numerous
patches accepted by the community. While NIODebugger can
interface with various off-the-shelf LLMs, it achieves more
promising results with proprietary GPT-based models. The
challenge of enabling state-of-the-art open-source LLMs to
generalize to agentic workflows remains well recognized and
continues to be an active area of research. We anticipate that
future advancements in open-source LLMs will enhance their
effectiveness when integrated with NIODebugger.
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