
AlphaTrans: A Neuro-Symbolic Compositional Approach
for Repository-Level Code Translation and Validation

International Conference on the Foundations of Software Engineering (FSE)

Ali Reza Ibrahimzada1, Kaiyao Ke1, Mrigank Pawagi3, Muhammad Salman Abid4, Rangeet Pan2,
Saurabh Sinha2, Reyhaneh Jabbarvand1

1University of Illinois Urbana-Champaign 2IBM Research 3Indian Institute of Science 4Cornell University

June 23rd, 2025

Code Translation

2

v Code Translation converts source code from one programming language (PL) to
another

v Code translation is very challenging because it requires understanding syntax and
semantics of the code in both source and target language

import java.util.*;
public class Main {
 public static void main(String[] args) {
 int max = 5;
 for (int i = 0; i < max; i++) {
 System.out.println(i);
 }
 }
}

Java Code
max = 5
for i in range(max):
 print(i)

Python CodeTranslation

Research Gap

3

v Demand for idiomatic, repository-level automated code translation
• Transpilation scales to repository-level, but produces unreadable, non-idiomatic code

• LLM-based techniques produce readable and idiomatic code, but do not scale

v Translation and validation as separate processes
• Translation first, validation next: costly and may involve redoing entire translations

• Hard to debug (root-causing where the inconsistency come from and patch the translation
approach)

Translation Validation

Bridging the Research Gap

4

Neuro-symbolic Translation

v Demand for idiomatic, repository-level automated code translation

• Combining the powers of program analysis and generative AI

Bridging the Research Gap

5

Neuro-symbolic Translation ValidationNeuro-symbolic Compositional
Translation and Validation

v Demand for idiomatic, repository-level automated code translation

• Combining the powers of program analysis and generative AI

v Translation and validation as separate processes

• Unifying translation and validation to promptly check compilation success and
functional equivalence amid translation

6

AlphaTrans

7

Program Transformation

v Automatically refactors the code to resolve programming language-
specific features that will be problematic in target language

• Method/constructor overloading, circular dependencies, local or anonymous
inner classes, pointers, pointer arithmetic, etc.

8

Source Program Decomposition

v Breaks the program into small fragments

• Helps with limited context window and attention span of LLMs

9

Test Decomposition

v Breaks the tests per method invocation

• Helps with translation bug localization while tests are translated and executed
on the translated code

10

Skeleton Construction and Validation

v Constructs the project skeleton in target language and uses it as a guide
for compositional (fragment-by-fragment) translation

11

Skeletons as Translation Guideline

v Constructs the project skeleton in target language and uses it as a guide
for compositional (fragment-by-fragment) translation

• Requires initial type resolution to ensure compilability of the skeletons

12

Compositional Translation

v Translates fragment-by-fragment in reverse topological call order

• The order ensures all dependencies are previously translated

13

Compositional Translation and Validation

v Validates whether skeletons are compilable or pass applicable tests per
each fragment translation

14

Language Interoperability

v Tests individual translated fragments in isolation using the tests in source
language

• Minimizes impact of test translation coupling effect (due to high degree of call
chain dependency)

Evaluating AlphaTrans to Translate Java Repositories

15

v Ten large-scale Java projects to be translated to Python

v LLM: DeepSeekCoder-33b-Instruct

Type Resolution and Skeleton Validation

16

v 91.99% automated type resolution (ATR values per project)

v 100% initial skeleton validation (SV values per project)

Abbreviations: SV (Skeleton Validation) and ATR (Automated Type Resolution)

Effectiveness in Translating Real-World Java Projects

17

v 98.8% syntactical correctness

v 25.14% of the translated methods were functionally equivalent (GS+ M1 All)

• More than half of methods that were covered by tests

v 27.03% runtime behavior validation (GS+M1 Some)

GS shows percentage of Graal success. SNEF shows the percentage of fragments now covered by any tests in the source program. M1
shows number of fragments that were validated through test translation, while Graal could not validate them

Effectiveness in Translating Real-World Java Projects

18

v 98.8% syntactical correctness

v 25.14% of the translated methods were functionally equivalent (GS+ M1 All)

• More than half of methods that were covered by tests

v 27.03% runtime behavior validation (GS+M1 Some)

GS shows percentage of Graal success. SNEF shows the percentage of fragments now covered by any tests in the source program. M1
shows number of fragments that were validated through test translation, while Graal could not validate them

All the translated code are idiomatic Python, measured by PyLint
(score 10 out of 10)

Fixing Translation Bugs

19

How much does it take for human developers to fix translation bugs?

v Commons-FileUpload

• 5.5 hours and required 120 line additions and 114 line deletions

v Commons-CLI

• 11 hours to fully achieve all passing tests, making 614 and 1253 line additions and
deletions

v Commons-CSV

• 30 hours with 2676 and 999 line additions and deletions

v Commons-Validator

• 34 hours to fix translation bugs, with 3585 and 2416 line additions and deletions

Fixing Translation Bugs

20

How much does it take for human developers to fix translation bugs?

v Commons-FileUpload

• 5.5 hours and required 120 line additions and 114 line deletions

v Commons-CLI

• 11 hours to fully achieve all passing tests, making 614 and 1253 line additions and
deletions

v Commons-CSV

• 30 hours with 2676 and 999 line additions and deletions

v Commons-Validator

• 34 hours to fix translation bugs, with 3585 and 2416 line additions and deletions

Without AlphaTrans, it can take several days, if not weeks and
months, to translate a project from scratch

Impact of Test Suite Quality

21

v Augmented original test suites with EvoSuite unit tests

• Translated unit tests individually and executed on the translated code

• Decrease in call chain length due to more isolated unit tests: 21.84 to 11.41

• Increase in TPR (+5.85%) and ATP (+2.11%)

TPR shows the percentage of test passes and ATP shows the percentage of all decomposed tests pass for a fragment

Impact of Test Suite Quality

22

v Augmented original test suites with EvoSuite unit tests

• Translated unit tests individually and executed on the translated code

• Decrease in call chain length due to more isolated unit tests: 21.84 to 11.41

• Increase in TPR (+5.85%) and ATP (+2.11%)

TPR shows the percentage of test passes and ATP shows the percentage of all decomposed tests pass for a fragment

High coverage test suites with focused unit tests are the key for test-
based translation validation

AlphaTrans Is Just The Beginning

23

1. Translating library APIs

• Major source of LLM hallucination and translation failure

2. Implementing non-existent logic

AlphaTrans Is Just The Beginning

24

3. Teaching LLMs to deal with corner cases (e.g., type casting)

4. Automated type resolution

• Removing the need for manual validation and contextual type resolution

5. A better in-isolation testing

• GraalVM has its limitation, i.e., state sharing

• GraalVM is limited to handful of PLs

AlphaTrans Is Just The Beginning

25

6. Other forms of translation validation

• Runtime verification

• Formal verification of specific properties, e.g., concurrency

7. Translating arbitrary pairs of PLs

• Far from being a PL-agnostic pipeline

• PL-specific properties are unique to programing languages

AlphaTrans: A Neuro-Symbolic Compositional Approach
for Repository-Level Code Translation and Validation

Ali Reza Ibrahimzada1, Kaiyao Ke1, Mrigank Pawagi3, Muhammad Salman Abid4, Rangeet Pan2,
Saurabh Sinha2, Reyhaneh Jabbarvand1

1University of Illinois Urbana-Champaign 2IBM Research 3Indian Institute of Science 4Cornell University

Tool: https://github.com/Intelligent-CAT-Lab/AlphaTrans

• Try it on new projects!
• Come talk to me if interested in repository-level

code translation

https://github.com/Intelligent-CAT-Lab/AlphaTrans
https://github.com/Intelligent-CAT-Lab/AlphaTrans
https://github.com/Intelligent-CAT-Lab/AlphaTrans
https://github.com/Intelligent-CAT-Lab/AlphaTrans
https://github.com/Intelligent-CAT-Lab/AlphaTrans

