2025 IEEE/ACM International Flaky Tests Workshop (FTW) | 979-8-3315-0231-7/25/$31.00 ©2025 IEEE | DOI: 10.1109/FTW66604.2025.00011

2025 IEEE/ACM International Flaky Tests Workshop (FTW)

Evaluating NONDEX for Modern Java Ecosystem

Kaiyao Ke
University of Illinois Urbana-Champaign
Urbana, IL, USA

kaiyaok2@illinois.edu

Abstract—NONDEX is a testing approach designed to unveil
implementation-dependent (ID) flaky tests stemming from in-
correctly relying on a deterministic implementation of a Java
API with an underdetermined specification, e.g., iterating over
elements of a HashSet object. Since the original NONDEX work
was published in 2016, we have enhanced the tool functionality
and expanded its integration with recent Java versions and build
tools like Maven and Gradle. This evolution enables NONDEX to
analyze a broader range of large, open-source Java projects.

This paper investigates our updated NONDEX on modern Java
projects. We identified 734 ID flaky tests in 31 Maven projects and
267 ID flaky tests in 25 Gradle projects. Comparing these findings
to prior work, this study highlights an increase for a modern
Java project to contain some ID flaky test(s). We also studied the
propagation of ID flakiness through project dependencies and
fixed a key non-determinism issue in the Gradle build system
itself. Our study emphasizes the importance of proactively em-
ploying NONDEX to detect and fix flaky tests, preventing potential
disruptions in ongoing and future projects. We put all our results
at https://github.com/NonDexFTW/NonDex-Experiments.

I. INTRODUCTION

Flaky tests [1], [2], [3], which can non-deterministically
pass or fail even for the same code under test, are an im-
portant problem in software development because they give
misleading signals to the developers about their code changes.
A test that passes before some code changes but fails after
the code changes may not indicate a bug in the code changes
themselves but can be due to test flakiness. Research on flaky
tests has proposed several automated techniques to detect,
fix, and mitigate flaky tests; e.g., Parry et al. [2] present an
extensive survey of prior work on flaky tests.

NONDEX [4], [5] is a previously proposed approach for de-
tecting a category of flaky tests, in particular implementation-
dependent (ID) tests that rely on the particular implementation
of methods with underdetermined specifications. For example,
the standard Java library includes methods for iterating over
set or map objects and a method for getting the list of fields
for a given class. The specifications for these methods allow
returning the values in different orders. Most, but not all,
implementations of these methods are deterministic and return
the values in the same order. A test that relies on a specific
deterministic implementation, e.g., expecting that a set with
values 1 and 2 must be printed as [1, 2], would fail when
the implementation changes.

NONDEX proactively detects flaky tests resulting from
such erroneous assumptions about specifications. To explore
whether a test could fail for changed implementations, NON-

979-8-3315-0231-7/25/$31.00 ©2025 IEEE
DOI 10.1109/FTW66604.2025.00011

23

Darko Marinov
University of Illinois Urbana-Champaign
Urbana, IL, USA

marinov@illinois.edu

DEX randomly permutes the returned values within the al-
lowed specifications. Developers are typically cognizant of the
detrimental impact posed by ID flaky tests and demonstrate a
willingness to address them. According to the International
Dataset of Flaky Tests (IDoFT) [6], [7], a total of 1,264 fixes
for ID tests in open-source Maven projects have been accepted,
while only 99 were rejected.

Prior work [5] adopted the definition that a specification is
underdetermined [8] if it allows multiple implementations to
produce different results for the same input, and defined an
underdetermined API as an API with such a specification. For
instance, the iterator () method of java.util.HashSet
exemplifies an underdetermined API, as its Javadoc [9] spec-
ifies that its returned elements do not preserve order. Some
code may erroneously assume deterministic order based on
a specific implementation, e.g., a particular JDK version, is
preserved across all JDK versions. Such assumption can result
in creating ID tests that exhibit flakiness across different JVMs
or Java versions [10]. The initial development of NONDEX [4]
aimed to proactively identify these incorrect assumptions on
underdetermined APIs by randomly exploring various allowed
behaviors during test execution. We refer to the NONDEX
process of permuting orders as “shuffling” for brevity.

The original NONDEX tool [5] provided several features but
also had some limitations. It included (1) an instrumentation
engine to modify the standard Java library APIs and allow
different results from distinct implementations, (2) a runner
layer using specified seeds and modes to support test execution
using APIs under order modification, (3) a detector running
tests both with and without NONDEX shuffling to detect
flakiness, and (4) a debugger reporting the single invocation
where NONDEX shuffling led to test failure. It also supported
command-line invocation and Maven integration. However, the
limitations included: (1) supporting only Java version 8§, (2) not
supporting the Gradle build system, and (3) offering a rather
limited support for debugging cases that depend on multiple
underdetermined specifications.

This paper summarizes key improvements to the NONDEX
tool that enabled us to evaluate NONDEX on more mod-
ern Java projects. Since 2016, the NONDEX tool has been
expanded in three major aspects: (1) extending support for
more Java versions, in fact any version between 8 and 21,
especially handling the new Java Platform Module System
introduced since Java version 9 [11]; (2) implementation
of the NONDEX Gradle plugin, supporting the increasing

Authorized licensed use limited to: University of lllinois. Downloaded on December 28,2025 at 15:05:15 UTC from IEEE Xplore. Restrictions apply.

popularity of the Gradle build tool [12]; and (3) enhancing
NONDEX debugging functionality, including an extension for
the NONDEX debugger to report all invocations leading to
test failures. All these extensions are publicly available in the
NONDEX repository [13] on GitHub. These extensions enable
running NONDEX on a much broader set of Java projects,
enabling us to perform a large study on modern Java projects.

In brief, this paper makes three contributions:

1) Substantial enhancements to the flaky test detection tool

NONDEX, including support for multiple Java versions,
compatibility with a more modern build tool, and im-
proved debugging functionality;
An extensive evaluation of NONDEX on modern Java
projects, allowing us to compare the prevalence of
projects with flaky tests to a previously reported result;
A detailed case study of how one particular cause of
flakiness in Gradle propagates through the intricate web
of project dependencies.

Improvements to NONDEX: We enhanced NONDEX to
improve its functionality and usability. The tool now supports
Java versions 8 through 21, with key updates to accommodate
changes introduced by the Java Platform Module System
(JPMS) in Java 9, including the use of the JRT filesystem
for runtime class instrumentation and a custom logger to
replace the now-inaccessible java.util.logging class. A
new Gradle plugin integrates NONDEX into Gradle projects,
providing same support for detecting flaky tests and debugging
buggy API invocations. NONDEX’s debugging capabilities
have also been expanded to report all invocations causing
flakiness. We also introduced a configurable option to control
the number of un-shuffled runs before applying NONDEX
shuffling, improving the likelihood of correct distinction be-
tween ID and other types of flaky tests.

Extensive Evaluation: Given the prevalence of Maven and
Gradle builds in Java projects, we conducted an extensive
analysis of NONDEX on hundreds of open-source projects
utilizing each build tool. Specifically, we ran NONDEX on
125 Maven projects (with 2,374 Maven modules and 108,008
passing tests) and on 121 Gradle projects (with 860 Gradle
subprojects and 103,947 passing tests). Our runs detected 734
ID flaky tests across 73 Maven modules in 31 projects and
267 ID flaky tests across 55 Gradle subprojects in 25 projects.
In particular, 28.80% Maven projects we examined contain at
least one ID test. Compared to prior work [4], which detected
flaky tests in only 10.77% of all Maven projects examined, we
observed a substantial increase in the likelihood of projects
containing some flaky test(s), presumably attributable to the
growing complexity of software projects and reliance on
external libraries over the years.

Case Study: As a case study, we identified how a single
false assumption regarding an underdetermined API could
propagate into a multitude of flaky tests across various
projects. We performed a detailed examination of 626 flaky
tests reported by NONDEX in 69 smaller-scaled Gradle
projects (which are distinct from the 121 large-scale Gradle
projects used in our previous experiments), and we found that

2)

3)

24

109/626 (17.4%) inspected tests, spanning 14/69 (20.3%) of
Gradle projects, all resulted from just one false assumption
about java.util.HashSet.iterator () in the core Gradle
source code itself. We opened a pull request (PR) to fix this
bug in Gradle [14]. Our recently accepted PR not only fixes
the tests we previously identified but also prevents related tests
in any additional projects we did not even run. Instances such
as this Gradle bug serve as an indicator that non-determinism
and flakiness can propagate widely within the intricate web of
project dependencies.

II. OVERVIEW OF THE ORIGINAL NONDEX TECHNIQUE

Shi et al. [4] introduced the original NONDEX technique
in 2016. The main goal of NONDEX is to provide a way
to identify implementation-dependent (ID) flaky tests by ex-
plicitly modeling non-deterministic behaviors allowed by the
Java Standard Library specifications and intentionally shuffling
various allowed orders. NONDEX initially referred to this cat-
egory of test flakiness as “assumption of deterministic imple-
mentations of non-deterministic specifications (ADINS) [4].
Shi et al. identified methods in the Java Standard Library
where non-deterministic behavior is permitted by the specifica-
tion, even if the current underlying implementations are fully
deterministic. Identifying such methods is challenging because
the non-determinism arises from the specification itself rather
than the specific implementation code.

To detect these methods, Shi et al. searched Javadoc key-
words (e.g., “order”, “deterministic”, and “not specified”’) and
public methods returning arrays to identify where the order or
return structure is underspecified. After identifying these meth-
ods, Shi et al. developed shufflers to simulate different levels
of underspecified behavior. They categorized non-determinism
into three main types: random (e.g., Object#hashCode ()),
permute (e.g., collections where the order of elements may
vary), and extend (e.g., arrays with flexible length constraints).
The NONDEX tool then shuffles the output of these methods,
exploring possible behavior by modifying the standard Java
library itself to return different orders as the output of these
methods with respect to a given random seed. This technique
exposes flakiness by mimicking scenarios where tests fail
due to incorrect assumptions about deterministic behavior in
underdetermined specifications.

The main workflow for using NONDEX involves creating
and utilizing instrumented versions of standard Java libraries.
First, when NONDEX is installed, it generates an instrumented
JAR with the injection of new behaviors into the specific
Java Standard Library methods. The NONDEX tool also pre-
builds a NONDEX-common JAR to control non-determinism
(e.g, which APIs to shuffle or not shuffle). After the setup,
users can run their application with NONDEX by including
the instrumented JARs on the Java boot classpath, enabling
NONDEX to identify potential flaky tests that rely on deter-
ministic assumptions in inherently underdetermined methods.
A later tool paper [5] provided the initial NONDEX plugin for
the widely used Maven build system.

Authorized licensed use limited to: University of lllinois. Downloaded on December 28,2025 at 15:05:15 UTC from IEEE Xplore. Restrictions apply.

T T T T T |
'
,;’”/% Debugger i
I
'
Tests i T !
| Maven/Gradle
N 1 <;:: Plugin
H ! Architecture
| T | .
| |
'

'
=]
e N =

JRT Image | | 1
(Java 9+) . ’ '
| Instrumentation nstrumented | | NonDex
Engi —_— Standard | Core
. . ngine Libraries Architecture
rt.jar
(Java 8) | : I

Fig. 1. Architecture of the latest NONDEX version 2.2.1

III. IMPROVEMENTS OF NONDEX

This section outlines our most notable improvements of the
NONDEX tool since 2016. Figure 1 shows the architecture of
the latest version of the NONDEX tool. The tool is primarily
used through the NONDEX Maven and Gradle plugins; the
two have distinct architectures for runners, detectors, and
debuggers, but they share a common instrumentation engine
that currently accommodates Java versions from 8§ to 21.

A. Support for Multiple Java Versions

The initially released NONDEX version [5] was 1.0.0, and
it has since evolved to version 2.2.1, reflecting substantial
changes, particularly in its integration with various versions of
the Java programming language. In fact, the versioning scheme
of NONDEX deviates from the strict semantic versioning [15],
because the last two digits signify the version of Java, e.g., 2.1
in 2.2.1 signify support for Java 21, and the previous version
2.1.7 supported Java 17.

Notably, the key enhancement lies in the transition between
Java 8 and 9. Java 9 introduced a novel Java Platform Module
System (JPMS) [16]. (Note that the same term “module” is
used by both Java 9 and Maven but for completely different
concepts.) This change required a substantial redesign of the
NONDEX instrumentation of the standard library code. A
change in the implementation of VM. class in Java 9 includes
loading standard libraries earlier (during VM initialization),
necessitating postponing NONDEX instrumentation of the
standard library to avoid exceptions during VM initialization
when executed under Java 9+. A checker added in NONDEX
ensures that the VM is booted before initializing NONDEX.

Additionally, the initial instrumentation engine of NON-
DEX [5] conceptually operated by modifying the rt . jar file
that stored the classfiles of the standard Java library. However,
Java 9+ versions no longer include 1ib/rt.jar within their
JRE images. To adapt, NONDEX implements a check for the
used Java version and instead of using rt.jar utilizes the
JRT filesystem to extract runtime classes for instrumentation
when NONDEX executes under Java 9+.

Furthermore, the initial version of the NONDEX tool utilized
the java.util.logging class for logging, which became

25

inaccessible from the java.base module in Java 9+ versions.
In response, NONDEX now includes a custom logger for
all NONDEX executions. The major changes for newer Java
versions were accumulated in one pull request for NON-
DEXversion 2.1.1 that added support for Java 11 [17]. Since
then support has been extended to Java 17 (NONDEX version
2.1.7) [18] and Java 21 (NONDEX version 2.2.1) [19].

B. Integration with Gradle

The latest version of NONDEX is seamlessly integrated
in the testing process for Gradle builds through our new
Gradle plugin, available from the Gradle Plugin Portal [20].
Developers using Gradle can incorporate NONDEX into their
projects by adding NONDEX as a plugin to the top-level build
configuration file (by default build.gradle) and applying
it to subprojects if necessary. Our NONDEX Gradle plugin
provides three tasks: nondexTest for detecting flaky tests,
nondexDebug for outputting debugging help in the form of in-
vocations leading to flakiness, and nondexClean for deleting
directories and files generated by NONDEX. Both the detector
and the debugger call the NONDEX runner that executes tests
using the NONDEX-instrumented libraries. The NONDEX run-
ner incorporates the NONDEX-instrumented standard libraries
and the packaged nondex-common. jar supporting NONDEX
configuration and logging into the bootclasspath of the
JVM employed for Gradle testing.

C. Improved Functionality

Two major functionality improvements of NONDEX are the
new ability of the debugger to report multiple invocations and
a new option to control the number of clean test runs before
NONDEX applies shuffling. Minor improvements include ex-
emptions from shuffling small empty or singleton collections,
optimized data retrieval from HashMap objects, and more.

1) Debugger Reports Multiple Invocations: In contrast to
prior work [5], where the debugger performed binary search on
all invocations of each test and identified a single invocation
that could lead to failure under NONDEX shuffling, the current
version searches for all such invocations via backtracking on
the binary search and returns a List of invocations. This
refinement is particularly beneficial in large-scale projects
where tests often encompass more than one false assumption
regarding underdetermined APIs. (In fact, the experience with
the extended debugging helped us to later debug the issue
in the Gradle core code, described in Section VI.) Before
our new extension, the debugging process was slowed down
by requiring multiple iterations to fix the multiple causes of
non-determinism one-by-one, while rerunning NONDEX on
partially fixed code versions.

2) Configurable Number of Runs Without NONDEX Shuf-
fling: In its default configuration, NONDEX conducts one un-
shuffled run followed by three NONDEX-shuffled runs for each
test. The tool identifies and reports a test if it passes in the
un-shuffled run but fails in any of the subsequent NONDEX-
shuffled runs. These reruns also allow NONDEX to detect
flaky tests that are not implementation-dependent (ID) and

Authorized licensed use limited to: University of lllinois. Downloaded on December 28,2025 at 15:05:15 UTC from IEEE Xplore. Restrictions apply.

whose root causes may not be some false assumptions on
underdetermined APIs. For instance, a test that fails due to
some timing or concurrency issues may fail with NONDEX,
although the root cause is not NONDEX-shuffling.

In fact, we found that some flaky tests documented initially
as ID tests in IDoFT [6], [7], because they were reported by
NONDEX, are later relabelled through manual inspection. One
example are non-idempotent tests that exhibit deterministic
pass results in the initial run but fail in subsequent runs [21].
Running the NONDEX debugger on such non-idempotent
tests is wasteful, as their execution unnecessarily prolongs
the binary search without providing useful information for
debugging ID behavior. Similarly, if NONDEX identifies tests
that are flaky due to other non-determinism causes (present
without NONDEX shuffling), such causes would disrupt the
debugger’s binary search algorithm. In response, we make
NONDEX support a configurable number of clean runs without
shuffling. For example, this feature was useful in our study
when performing a sanity check on tests reported by the
detector, aiding in the exclusion of tests unsuitable for further
examination by the debugger.

IV. EXPERIMENTS

Our evaluation follows the experimental methodology simi-
lar to the initial studies of NONDEX [4], [5]. We first collected
projects from GitHub. We then ran NONDEX to identify flaky
tests and in particular likely ID tests. We finally analyzed these
collected tests in more detail.

A. Project Selection

We conducted an evaluation of NONDEX on popular, large-
scale, open-source projects hosted on GitHub. All the projects
we selected use either Maven or Gradle for building. For both
build systems, we employed the GitHub Search API to collect
a list of Java-based projects. For Maven projects, we applied a
filter to include only repositories with more than 1,500 stars.
For Gradle projects, we set a lower star threshold of 200,
because Maven, being older, generally has projects with higher
star counts accumulated over a longer period.

The GitHub Search API returns a maximum of 1,000 results
per query; we executed the query once, retrieving the top 1,000
most relevant repositories based on GitHub’s ranking algo-
rithm. From these, we further filtered repositories containing
a pom.xml file for Maven or a build.gradle for Gradle.
Additionally, we ensured that the latest commit occurred
within the past 12 months to confirm active maintenance. This
process yielded 418 Maven projects and 522 Gradle projects.
From these projects, we randomly selected 207 Maven projects
and 244 Gradle projects, and attempted to compile them.

We then excluded the projects that fail to compile on our
Ubuntu 22.04 machine under either Java 17 or 21. We selected
Java 17 and 21 for evaluating modern Java projects because
these two Java versions are the latest Long-Term Support
(LTS) and feature releases. For Maven, we encountered build
failures in 82 out of 207 projects, while for Gradle, 123 out
of 244 projects failed. Note that these build failures are not

26

due to NONDEX—common causes of build failures include
incompatible Java versions, network errors, or OS dependen-
cies. Our final evaluation includes 125 Maven projects (with a
total of 2,374 Maven modules) and 121 Gradle projects (with
a total of 860 Gradle subprojects).

B. Flaky Test Collection

Our evaluation specifically targeted tests that passed in the
clean run without NONDEX shuffling. We do not evaluate
tests that fail in clean runs, although they could in theory be
flaky if they pass in some run with NONDEX shuffling. The
selected 125 Maven projects (with 2,374 Maven modules) had
a total of 108,008 passing tests, and the selected 121 Gradle
projects (with 860 Gradle subprojects) had a total of 103,947
passing tests. For each module (in Maven) or subproject (in
Gradle), we initially ran tests without NONDEX shuffling and
subsequently ran NONDEX with three different random seeds,
as per the default NONDEX mode. We use the same random
seeds for NONDEX shuffling for both Java 17 and 21. Our
script recorded all flaky tests, identified as those passing in the
clean run but failing in one of the runs shuffled by NONDEX.

Combining the results of Java 17 and 21, NONDEX reported
flaky tests in 36 (of 125) Maven projects and 35 (of 121)
Gradle projects. Because NONDEX reports all flaky tests that
pass in the clean run but fail in one of the “shuffled” runs, such
reported tests need not all be ID. For example, a test may pass
or fail non-deterministically due to asynchronous wait [22] or
the random seeds selected for random number generators [23].

To distinguish which reported tests are actually ID, we
developed a semi-automated pipeline. First, we perform
50 reruns without shuffling any APIs to exclude non-
deterministic [24] or non-idempotent-outcome [21] flaky tests.
Then, the first author, with three years of experience with
ID flaky tests, manually analyzed the remaining tests (e.g.,
checking if binary search of the debug phase converges and
reviewing stacktraces) to determine if the test is likely ID. We
merged our results into the IDoFT [6]. Generally, we verified
that a relatively large fraction of studied projects has some (ID)
flaky test(s), although in a few projects, NONDEX detected
tests that are mostly due to other (non-ID) reasons.

C. Summary of Results

Table I presents a summary of our experimental results. We
classify a project/module/subproject as “flaky” if it contains
at least one flaky test reported by NONDEX, and we classify
a project/module/subproject as “contains ID” if it contains at
least one ID flaky test verified through the automatic reruns
and our manual analysis. Notice that NONDEX reports a
different number of flaky tests between Java 17 and Java
21, due to non-ID reasons, such as non-deterministic server
timeouts. The natural non-determinism in flaky tests could
lead to different results even for the same Java version. When
inspecting reported tests, we found the exact same verified
ID tests across both versions, likely because no substantial
implementation changes in underdetermined APIs were made
between Java versions 17 and 21.

Authorized licensed use limited to: University of lllinois. Downloaded on December 28,2025 at 15:05:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SUMMARY RESULTS FOR MAVEN AND GRADLE PROJECTS

Maven Gradle
Total Containing Flaky Tests Containing ID Tests = Total Containing Flaky Tests ~ Containing ID Tests
Projects 125 36 (28.80%) 31 (24.80%) 121 35 (28.93%) 25 (20.67%)
Modules / Subprojects 2,374 97 (4.09%) 73 (3.07%) 860 70 (8.14%) 55 (6.40%)

Tables II and III provide a more detailed breakdown, pre-
senting the number of flaky tests alongside the total number
of tests evaluated for each identified “flaky”” Maven or Gradle
project. We also document the short commit SHA at which the
flaky tests are detected, facilitating the reproducibility of our
results and the further study of test flakiness.

V. DISCUSSION

Our experiments on both Maven and Gradle projects indi-
cate a potential increasing prevalence of open-source projects
to contain some flaky tests than in the past. In contrast to prior
work [4] which identified at least one flaky test (a total of 60
flaky tests) in merely 10.77% of the projects that were built
and run, the results of our experiment show that 28.80% of
Maven project and 28.93% of Gradle projects contain at least
one flaky test. These results indicate a potential considerable
increase in the likelihood of flaky test presence in modern
large-scale projects. After careful inspection, we also find that
24.80% of Maven projects and 20.67% of Gradle projects
contain at least one ID flaky test.

It is noteworthy that the percentage of “flaky” project
parts (4.09% for Maven and 8.14% for Gradle)—modules (as
per the Maven definition) or subprojects (as per the Gradle
definition)—is substantially lower than that of “flaky” projects
(28.80% for Maven and 28.93% for Gradle). This discrepancy
can arise from the fact that tests are typically concentrated
within a small subset of modules or subprojects in extensive
multi-module or multi-subproject repositories. This discrep-
ancy can also mean that the overall prevalence of flaky tests is
not increasing for project parts/modules/subprojects but simply
the projects themselves are growing, so they are more likely
to have some flaky test somewhere in the overall test suite.

It is also likely that the number of ID flaky tests within
a project may increase over time. In the prior work [5], the
greatest number of ID flaky tests present in a project was
just 8, while in our experiment, several individual projects
exhibit more than 50 ID tests. For example, the Maven project
kiegroup/jbpm contains 361 ID flaky tests distributed across
10 modules, indicating that over 10% of its total tests exhibit
ID flakiness. As another example, while prior work [5] only
found 1 ID test in an older version of alibaba/druid, our
current experiment finds 12 ID flaky tests in a more recent
version of alibaba/druid. The increase in the number of
flaky tests—and in particular, ID tests—in projects could be
attributed to the expansion of code size, more extensive testing
logic, and the widespread adoption of parameterized testing.

27

public class PatternSpecFactory ... {
private String[] previousDefaultExcludes;
private ... getDefaultExcludeSpec(...) {
String[] defaultExcludes DirectoryScanner
.getDefaultExcludes () ;
(defaultExcludeSpecCache.isEmpty ()) {

if

} else if (invalidChangeOfExcludes (
defaultExcludes)) {
failOnChangedDefaultExcludes (...);
// throws "InvalidUserCodeException"

}

}
private boolean invalidChangeOfExcludes (String

[1] defaultExcludes) {

return !Arrays.equals(
previousDefaultExcludes,
defaultExcludes) ;

}
Fig. 2. Snippet of the PatternSpecFactory class from the Gradle core

public class DirectoryScanner ... {
private static final Set<String>

defaultExcludes = new HashSet<>();
public static String[] getDefaultExcludes() {
synchronized (defaultExcludes) {

return defaultExcludes.toArray (new
String[0]);

Fig. 3. Snippet of the DirectoryScanner class from the Gradle core

However, it is important to note that the absolute number
of ID flaky tests does not serve as a direct indicator of
the number of false assumptions related to underdetermined
Java APIs. The number of test failures may not be strictly
proportional to the number of underlying code faults, because
multiple test failures may be caused by the same fault.
In fact, looking through the International Dataset of Flaky
Tests (IDoFT) [6], where numerous contributors document
fixes for flaky tests detected by recent versions of NONDEX,
we can see many fixes that are just concise one-liners but
rectify several flaky tests. For instance, several recent pull
requests to large projects such as wildfly/wildfly [25]
and google/TestParameterInjector [26] provide illus-
trations where approximately 50 NONDEX-detected flaky ID
tests in a project stem from a single, straightforward false
assumption concerning one underdetermined Java APIL.

Authorized licensed use limited to: University of lllinois. Downloaded on December 28,2025 at 15:05:15 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DETAILED VIEW OF MAVEN PROJECTS (SORTED BY THE NUMBER OF FLAKY TESTS IN JAVA 17)

Project Stars (2024-11-11) Commit Total Tests Flaky (Java 17) Flaky (Java 21) ID
apache/pulsar 14,237 fdeb191 3,705 507 298 12
kiegroup/jbpm 1,647 f7e80e8 3,501 364 366 361
apache/tinkerpop 1,972 8bfdf50 29,559 321 321 97
swagger-api/swagger-core 7,386 5186247 649 82 82 82
spring-cloud/spring-cloud-config 1,963 3e423e5 1,019 58 62 0
apache/iotdb 5,612 f94f99a 3,281 58 58 54
apache/servicecomb-java-chassis 1,907 9bab6eb 1,975 33 32 32
NanoHttpd/nanohttpd 6,949 efb2ebf 224 17 17 17
eclipse-vertx/vert.x 14,313 67ba713 4,660 16 16 1
openjdk/jmh 2,218 cb3c3a9 1,031 13 1 0
alibaba/druid 27,972 ed00cab 6,438 12 12 12
knowm/XChange 3,874 5bd548a 1,069 9 9 8
INRIA/spoon 1,753 bdobl6f 4,264 8 8 8
tabulapdf/tabula-java 1,841 8bfa3ad 206 7 7 1
RipMeApp/ripme 3,722 4aec463 119 6 9 0
EsotericSoftware/kryo 6,198 c6d199b 610 6 6 6
apache/tika 2,512 589d02a 1,965 6 6 5
spring-projects/spring-data-redis 1,771 3e8cd16 2,738 6 6 6
karatelabs/karate 8,264 8d4511c 619 5 4 4
apache/incubator-kie-optaplanner 3,327 a586b25 4,993 5 6 3
spring-projects/spring-retry 2,174 e19f5d7 387 4 4 3
hneemann/Digital 4,421 34c9832 820 4 4 4
apache/atlas 1,835 d8cfle3 415 4 4 4
mybatis-flex/mybatis-flex 1,913 d725995 91 3 3 3
primefaces/primefaces 1,808 0714442 412 2 2 2
networknt/light-4j 3,611 254099b 835 2 2 1
winder/Universal-G-Code-Sender 1,905 061670e 739 1 1 1
wildfly/wildfly 3,061 8foefd8 1,902 1 1 1
ulisesbocchio/jasypt-spring-boot 2,908 fcOef8f 50 1 0 0
techa03/goodsKill 1,948 5¢99f0e 37 1 1 1
square/keywhiz 2,621 52e77fd 243 1 1 1
spring-projects/spring-data-elasticsearch 2,916 957fe05 525 1 1 1
quarkusio/quarkus-quickstarts 1,965 6d72b2d 236 1 1 1
javaee-samples/javaee7-samples 2,509 4a67b23 2 1 0 0
citerus/dddsample-core 5,012 8870097 129 1 1 1
atomashpolskiy/bt 2,421 6218108 296 1 1 1
Total 162,466 N/A 79,744 1,568 1,353 734

VI. CASE STUDY

We describe one important example that demonstrates
how flakiness stemming from underdetermined APIs
can permeate widely through the intricate web of
project dependencies. Specifically, the Gradle’s build
policy disallows any modification to the list of
excluded files during the build process. In Figure 2,
the method within
PatternSpecFactory. java inspects whether the
array of currently excluded files, obtained from
DirectoryScanner.getDefaultExcludes (), matches
the previously retrieved array returned from the same
method. However, the DirectoryScanner class, depicted
in Figure 3, implements its defaultExcludes collection
as a HashSet. Subsequently, getDefaultExcludes ()
returns the elements of the HashSet collection as an array,
which lacks deterministic order in its output as per the
Javadoc specification [9]. Consequently, the comparison using

getDefaultExcludeSpec ()

28

Arrays.equals () is susceptible to failure even if the actual
list of excluded files remains unchanged throughout the build.
Our detailed examination of 626 flaky tests, reported by
NONDEX in 69 smaller-scaled Gradle projects, found that
109 of these tests, spanning 14 projects, exhibit flakiness due
to invoking the Gradle Runner.

Our accepted pull request [14] to the Gradle project fixes
such flaky tests in all the affected projects upon their migration
to Gradle 8.6 or a subsequent version. Notably, this case is
the first instance where we encounter ID tests that pose a
considerable challenge to rectify, particularly as integration-
testing a Gradle plugin necessitates invoking the Gradle run-
ner, making target-project-scope fixes elusive. Following our
investigation, we pinpointed 322 hard-to-fix ID tests from the
69 smaller-scaled Gradle projects, whose cause of failure (i.e,
false assumption on an underdetermined API) is in the code
outside of the project, and the project has no way to control
that cause without removing the dependency on the external
code. We recorded all such tests and the reasons in a separate

Authorized licensed use limited to: University of lllinois. Downloaded on December 28,2025 at 15:05:15 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DETAILED VIEW OF GRADLE PROJECTS (SORTED BY THE NUMBER OF FLAKY TESTS IN JAVA 17)

Project Stars (2024-11-11) Commit Total Tests Flaky (Java 17) Flaky (Java 21) ID
apple/servicetalk 925 00e740c 19,573 1,045 637 9
java9-modularity/gradle-modules-plugin 233 Sfadfd6 82 57 57 0
micronaut-projects/micronaut-core 6,083 6alc54d 15,630 56 56 55
spinnaker/clouddriver 434 3ale81b 5,051 46 46 46
aadnk/ProtocolLib 287 e77ed96 141 30 30 30
spring-projects/spring-authorization-server 4,872 6ec92a0 1,047 27 27 27
Consensys/teku 674 da3e51b 1,070 19 20 18
Netflix/Hystrix 24,136 7c03baf 692 11 11 11
conductor-oss/conductor 18,201 2e309b2 1,367 10 8 8
synthetichealth/synthea 2,178 16ee9bc 596 9 9 9
spring-projects/spring-restdocs 1,161 5cd47c6 1,104 9 9 8
elastic/elasticsearch-hadoop 990 3774f8f 1,449 8 8 8
ContextMapper/context-mapper-dsl 220 9129c0f 787 7 7 7
ReactiveX/RxJava 47,909 988eSba 12,389 5 6 0
LuckPerms/LuckPerms 2,023 €6599a2 862 5 5 5
TeamNewPipe/NewPipeExtractor 1,381 3402cdb 2,119 4 0 0
mclarke/sonarqube-community-branch-plugin 2,246 5e5cas0 342 4 4 4
JakeWharton/mosaic 1,925 f192af3 4 4 4 4
bitwig/dawproject 776 5818a71 12 4 4 4
spring-projects/spring-kafka 2,189 769da20 784 3 4 2
gazbert/bxbot 830 cd1f0af 231 3 3 3
giniu/java-sdk 552 9440857 63 2 2 2
igvteam/igv 645 66f76ea 442 2 1 0
deepjavalibrary/d;jl 4,136 c69aeb6 198 2 2 2
controlsfx/controlsfx 1,576 a05¢c231 37 2 2 0
webauthn4j/webauthn4j 442 fb723ba 1,002 1 1 1
stripe/stripe-java 821 6¢3dc05 62 1 1 1
spring-projects/spring-statemachine 1,562 1b2a868 705 1 1 0
schibsted/jslt 638 2cldbac 720 1 1 1
rsocket/rsocket-java 2,360 6d07389 1,078 1 2 0
Netflix/servo 1,418 7dbfafa 362 1 1 0
jvm-bloggers/jvm-bloggers 231 c7cbf81 1,447 1 1 1
jenkinsci/JenkinsPipelineUnit 1,544 6bbc2c3 258 1 1 1
elki-project/elki 792 7f7482c 1,245 1 0 0
antlr/intellij-plugin-v4 468 cf76d88 54 1 1 0
Total 136,858 N/A 73,005 1,384 972 267

repository [27]. Our case study emphasizes the importance
of preempting false assumptions on underdetermined APIs to
prevent their propagation through project dependencies.

VII. CONCLUSION AND FUTURE WORK

With substantial development strides in recent years, the
NONDEX tool has evolved to effectively account for behav-
ioral variations among different Java versions and build tools.
The NONDEX tool can now be run on most Java projects
using Maven or Gradle, facilitating the identification of ID
flaky tests whose executions have false assumptions related to
underdetermined APIs. Using the latest NONDEX allowed us
to perform a large-scale study of flaky tests, and in particular
ID flaky tests, in modern Java projects. Our experiments
underscore the potential increasing prevalence of ID flaky
tests in large-scale projects, and our case study reveals how
flakiness can detrimentally propagate through the intricate web
of modern project dependencies.

Our future plans involve integrating NONDEX with tools
that can facilitate the automated resolution of NONDEX-

reported flaky tests. Specifically, we can aim to leverage
approaches based on large language models to automatically
generate fixes, thereby alleviating the labor-intensive stages
of rectifying flaky tests [28], [29]. While on one hand it is
negative to see that the number of flaky tests has increased over
time, on the positive more research opportunities arise to seek
approaches to streamline the overall process and enhance the
efficiency of addressing implementation-dependent flakiness at
scale in modern software projects.

ACKNOWLEDGMENTS

We thank Yusen Wang for his help in inspecting test
flakiness and starting some new NONDEX extensions for
underdetermined APIs related to the Java streams. We also
thank Philmon Roberts and Xinyu Wu for developing the first
version of the new Gradle plugin and starting some scripts for
experiments. This work was partially supported by NSF grants
CCF-1763788 and CCF-1956374. We acknowledge support
for research on flaky tests from Facebook and Google.

29

Authorized licensed use limited to: University of lllinois. Downloaded on December 28,2025 at 15:05:15 UTC from IEEE Xplore. Restrictions apply.

[8]

[9]

[10]

(1]

[12]
[13]

[14]

REFERENCES

Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in FSE, 2014.

O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A survey of
flaky tests,” ACM TOSEM, 2021.

W. Zheng, G. Liu, M. Zhang, X. Chen, and W. Zhao, “Research progress
of flaky tests,” in SANER, 2021.

A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting assumptions
on deterministic implementations of non-deterministic specifications,” in
ICST, 2016.

A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and D. Marinov, “NonDex:
A tool for detecting and debugging wrong assumptions on Java API
specifications,” in FSE Demo, 2016.

W. Lam, “International Dataset of Flaky Tests (IDoFT),” 2020. [Online].
Available: https://github.com/TestingResearchlllinois/idoft

W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A
framework for detecting and partially classifying flaky tests,” in ICST,
2019.

B. Liskov and J. Guttag, Program Development in Java: Abstraction,
Specification, and Object-Oriented Design, 1st ed. USA: Addison-
Wesley Longman Publishing Co., Inc., 2000.

Oracle Corporation, “Java™ Platform Standard Ed. 8 - HashSet
Javadoc,” https://docs.oracle.com/javase/8/docs/api/java/util/HashSet.
html, November 2024.

, “Collections Framework Enhancements in Java SE 8,” https://docs.
oracle.com/javase/8/docs/technotes/guides/collections/changes8.html,
November 2024.

P. Deitel, “Understanding Java 9 Modules: What they are and
how to use them,” https://www.oracle.com/corporate/features/
understanding-java-9-modules.html, 2017, accessed: 2024-11-11.
Gradle Inc., “Gradle vs Maven: Performance comparison.” https://gradle.
org/gradle-vs-maven-performance, January 2024.

NonDex GitHub Repository, “NonDex Source Code,” https://github.com/
TestingResearchlllinois/NonDex, February 2025.

Pull Request #26452 in the Gradle GitHub Repository, “Fix order depen-
dency in excluded group.” https://github.com/gradle/gradle/pull/26452,
November 2023.

30

[15]

[16]

(17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

(27]
[28]

[29]

T. Preston-Werner, “Semantic Versioning 2.0.0,” 2017, accessed:
2024-11-11. [Online]. Available: https://semver.org/

Java Platform Module System (JPMS) - Java 9 Documentation, Or-
acle Corporation, 2017, https://docs.oracle.com/javase/9/docs/api/java/
lang/module/package-summary.html.

Pull Request #166 in the NonDex GitHub Repository, “Add support for
Java 9+: Addressed code changes and resolved conflicts,” https://github.
com/TestingResearchlllinois/NonDex/pull/166, November 2022.

Pull Request #183 in the NonDex GitHub Repository, “Support Java 17.”
https://github.com/TestingResearchlllinois/NonDex/pull/183, December
2023.

Pull Request #196 in the NonDex GitHub Repository, “Support Java
21.” https://github.com/TestingResearchlllinois/NonDex/pull/196, Octo-
ber 2024.

Gradle Plugin Portal, “NonDex plugin for Gradle.” https://plugins.
gradle.org/plugin/edu.illinois.nondex, December 2023.

A. Wei, P. Yi, Z. Li, T. Xie, D. Marinov, and W. Lam, “Preempting
flaky tests via non-idempotent-outcome tests,” in ICSE, 2022.

D. Silva, M. Gruber, S. Gokhale, E. Arteca, A. Turcotte, M. d’Amorim,
W. Lam, S. Winter, and J. Bell, “The effects of computational resources
on flaky tests,” IEEE TSE, 2024.

S. Dutta, A. Arunachalam, and S. Misailovic, “To seed or not to seed?
An empirical analysis of usage of seeds for testing in machine learning
projects,” in ICST, 2022.

W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov, “Under-
standing reproducibility and characteristics of flaky tests through test
reruns in Java projects,” in ISSRE, 2020.

Pull Request #17472 in the Wildfly GitHub Repository, “WFLY-
18823 Fix Flaky AbstractValidationUnitTest.” https://github.com/
wildfly/wildfly/pull/17472, December 2023.

Pull Request #41 in the TestParameterlnjector GitHub Reposi-
tory, “fix: sort the nondeterministic arrays.” https://github.com/google/
TestParameterInjector/pull/41, November 2023.
ID-HtF GitHub Repository, “ID-HtF Tests,”

kaiyaok2/ID-HtF.
Y. Chen and R. Jabbarvand, “Neurosymbolic repair of test flakiness,” in

ISSTA, 2024.
K. Ke, “NIODebugger: A novel approach to repair non-idempotent-
outcome tests with LLM-based agent,” in ICSE, 2025.

https://github.com/

Authorized licensed use limited to: University of lllinois. Downloaded on December 28,2025 at 15:05:15 UTC from IEEE Xplore. Restrictions apply.

