
Evaluating NonDex for
Modern Java Ecosystem

Kaiyao Ke (kaiyaok2@illinois.edu), Darko Marinov (marinov@illinois.edu)

University of Illinois Urbana-Champaign

FTW @ ICSE 2025

1

mailto:kaiyaok2@illinois.edu
mailto:marinov@illinois.edu

Implementation-Dependent (ID) Flaky Tests

● Code that assumes a deterministic implementation of
non-deterministic specification (ADINS)

● Java API’s with non-deterministic specification

java.lang.Class#getDeclaredFields;
java.util.HashMap#entrySet;

....

● But “look deterministic” under specific implementation

2

Example: Simplified version of a Test from HubSpot/jinjava

3

Existing Solution: NonDex (Detector)

4

Existing Solution: NonDex (Debugger)

5

Existing Solution: NonDex

● Instrumentation engine:

Modifies the classes in the standard library to add code for random exploration

● Runner:

Controls behavior on instrumented library (e.g., seed, invocations to “permute”)

● Detector:

Executes tests a specified number of times to explore different behaviors

● Debugger:

Identifies the API invocation(s) where a wrong assumption was made.

6

2 user-facing phases

● Detection:

Find tests that pass initially but fail when
NonDex explores different allowed behaviors

● Debugging:

Identify the invocation making such
assumptions (binary search).

7

NonDex v1.0.0 Architecture

8

Limitations in the Original NonDex Tool

1. Supporting only Java version 8
2. Supporting only Maven
3. Debugger not reporting all false

assumptions

9

Our Contributions

● Incremental Contribution to NonDex:

3 major improvements

● Large-Scale study of ID Tests:

With interesting case studies

10

Our 1st Improvement: Support Multiple Java versions

● Handling JPMS Introduced from Java 9+:

Use JRT filesystem to extract runtime classes

● Postponing NonDex Instrumentation:

Java 9+ loads standard library classes earlier

● Minor Changes

Custom logging classes, adapt to newer ASM versions, …

11

Our 2nd Improvement: Integration with Gradle

● Same Workflow as the Maven plugin:

3 Tasks: nondexTest; nondexDebug; nondexClean

● Gradle Runner

Integrate NonDex-instrumented standard libraries

and packaged nondex-common.jar to JVM boot path.

● Released to Gradle Plugin Portal

12

Our 3rd Improvement: Enhanced Functionality

● Debugger Reports Multiple Invocations:

Searches for all individual ADINS invocations

● Configurable number of runs without shuffling

Avoid “debugging” non-ID tests

● Support instrumenting new under-determined APIs

e.g., Spliterators

13

Overview of the Latest Version of NonDex

14

Large-Scale Experiments

● Project Selection

207 Maven Projects (1500+ stars); 244 Gradle Projects (200+ Stars)

● Choose Long-Term Support (LTS) Java versions

Java 17 and Java 21

● Experiments ran on:

125 Maven Projects ; 121 Gradle Projects

15

Results

Main Finding: Number of ID Flaky tests “increase over time”

Prior Work (2016) vs. Our Work:

- Projects contain ID test under NonDex: 10.77% vs. 22.76%
- Maximum number of ID test in single project: 8 vs. 361

16

Results (Maven)

17

Results (Gradle)

18

Case Study: ID flakiness in Gradle Build Tool itself!

19

Study of ID Test “Propagation”

● Project Selection

69 “random” Gradle projects (without star threshold)

● Detected 322 “Hard-to-Fix” ID Tests

Project has no way to control ID flakiness without removing the
dependency on some external code

● Our accepted PR to Gradle:

Resolves 109 of these, and potentially many more!
20

Summary

● NonDex

Works for multiple Java versions and build tools

● ID Flaky Tests

More prevalent in modern Java projects

● Propagation of Flaky Tests

Practicality to fix flaky tests

21

