Evaluating NonDex for
Modern Java Ecosystem

Kaiyao Ke (kaiyaok2@illinois.edu), Darko Marinov (marinov@illinois.edu)

University of lllinois Urbana-Champaign
FTW @ ICSE 2025

mailto:kaiyaok2@illinois.edu
mailto:marinov@illinois.edu

Implementation-Dependent (ID) Flaky Tests

e Code that assumes a deterministic implementation of
non-deterministic specification (ADINS)

e Java APl’'s with non-deterministic specification

java.lang.Class#getDeclaredFields;
java.util. HashMap#entrySet;

e But “look deterministic” under specific implementation

N N NN NN
U b5 W
AN

w w w W N
W N PO O 00N O
ALY

w
B

Example: Simplified version of a Test from HubSpot/jinjava

@Test

public void testIDFlaky()

{
HashMap<String, Integer> map = new HashMap<>();
map.put(key:"bar", value:l);
map.put(key:"foo", value:2);

// Incorrect assumption: insertion order will be preserved in toString()
String expected = "{bar=1, foo=2}";
assertEquals(expected, map.toString());

Existing Solution: NonDex (Detector)

[ERROR] Failures:

[ERROR] AppTest.testIDFlaky:32 expected: <{foo=1l, bar=2}> but was: <
{bar=2, foo=1}>

[INFO]

[ERROR] Tests run: 2, Failures: 1, Errors: 0, Skipped: 0

[INFO]

INFO: Surefire failed when running tests for POOnPaevjXA03G4P3xAKDK9zk

[WARNING] com.mycompany.app.AppTest#testIDFlaky
[INFO] skskskokokskskokok

[INFO] A1l tests pass without NonDex shuffling
[INFO] #t#ttHHEHHE

[INFO] Across all seeds:

[INFO] com.mycompany.app.AppTest#testIDFlaky

Existing Solution: NonDex (Debugger)

TEST: com.mycompany.app.AppTest#testIDFlaky
java.base/java. lang.Thread.getStackTrace(Thread.java:1602)
java.base/edu.illinois.nondex.common.NonDex.printStackTraceIfUniqueDebugPoint(NonDex.java:165)
java.base/edu.illinois.nondex.common.NonDex.shouldExplore(NonDex.java:136)
java.base/edu.illinois.nondex.common.NonDex.getPermutation(NonDex. java:106)
java.base/edu.illinois.nondex.shuffling.ControWNondeterminism.shuffle(ControlNondeterminism.java:74)
java.base/java.util.HashMap$HashIterator$HashIteratorShuffler.<init>(Unknown Source)
java.base/java.util.HashMap$HashIterator.<init>(HashMap.java:1501)
java.base/java.util.HashMap$EntryIterator.<init>(HashMap.java:1542)

‘ java.base/java.util.HashMap$Ent rySet|. iterator(HashMap.java:1010)
java.base/java.util.AbstractMap.toString(AbstractMap.java:544)
com.mycompany.app.AppTest.testIDFlaky(AppTest.java:32)

Existing Solution: NonDex

e Instrumentation engine:

Modifies the classes in the standard library to add code for random exploration
e Runner:

Controls behavior on instrumented library (e.g., seed, invocations to “permute”)
e Detector:

Executes tests a specified number of times to explore different behaviors
e Debugger:

Identifies the APl invocation(s) where a wrong assumption was made.

2 user-facing phases

e Detection:

Find tests that pass initially but fail when
NonDex explores different allowed behaviors

e Debugging:

|dentify the invocation making such
assumptions (binary search).

NonDeXx v1.0.0 Architecture

3 > Detector >
J 1 . Test
. : : Reports
Tests and SUT : :
; > Debugger
1 1 \
: \ 4 Y
E > Runner —
s i
Jav_é v Debug
. Instrumentation _ Reports
rt.jar > i —> nondex-rt.jar
Engine

Limitations in the Original NonDex Tool

=

Supporting only Java version 8
Supporting only Maven
Debugger not reporting all false
assumptions

W N

Our Contributions

e Incremental Contribution to NonDex:
3 major improvements
e Large-Scale study of ID Tests:

With interesting case studies

10

Our 1st Improvement: Support Multiple Java versions

e Handling JPMS Introduced from Java 9+:
Use JRT filesystem to extract runtime classes
e Postponing NonDex Instrumentation:
Java 9+ loads standard library classes earlier
e Minor Changes

Custom logging classes, adapt to newer ASM versions, ...

11

Our 2nd Improvement: Integration with Gradle

e Same Workflow as the Maven plugin:
3 Tasks: nondexTest; nondexDebug; nondexClean

e Gradle Runner
Integrate NonDex-instrumented standard libraries
and packaged nondex-common.jar to JVM boot path.

e Released to Gradle Plugin Portal

12

Our 3rd Improvement: Enhanced Functionality

e Debugger Reports Multiple Invocations:
Searches for all individual ADINS invocations

e Configurable number of runs without shuffling
Avoid “debugging” non-ID tests

e Supportinstrumenting new under-determined APlIs

e.g., Spliterators

13

Overview of the Latest Version of NonDex

Tests

JRT Image
(Java 9+)

rt.jar
(Java 8)

Instrumentation SRS e
- e Standard
Engine
Libraries

Maven/Gradile
Plugin
Architecture

I

NonDex
Core
Architecture

I

14

Large-Scale Experiments

e Project Selection
207 Maven Projects (1500+ stars); 244 Gradle Projects (200+ Stars)

e Choose Long-Term Support (LTS) Java versions
Javal7 andJava 21

e Experimentsranon:

125 Maven Projects ; 121 Gradle Projects

15

Results

Maven Gradle
Total Containing Flaky Tests Containing ID Tests Total = Containing Flaky Tests Containing ID Tests
Projects 125 36 (28.80%) 31 (24.80%) 121 35 (28.93%) 25 (20.67%)
Modules / Subprojects 2,374 97 (4.09%) 73 (3.07%) 860 70 (8.14%) 55 (6.40%)

Main Finding: Number of ID Flaky tests “increase over time”
Prior Work (2016) vs. Our Work:

- Projects contain ID test under NonDex: 10.77% vs. 22.76%
- Maximum number of ID test in single project: 8 vs. 361

16

Results (Maven)

Project Stars (2024-11-11) Commit Total Tests Flaky (Java 17) Flaky (Java 21) ID
apache/pulsar 14,237 fdeb191 3,705 507 298 12
kiegroup/jbpm 1,647 f7e80e8 3,501 364 366 361
apache/tinkerpop 1,972 8bfdf50 29,559 321 321 97
swagger-api/swagger-core 7,386 5186247 649 82 82 82
spring-cloud/spring-cloud-config 1,963 3e423e5 1,019 58 62 0
quarkusio/quarkus-quickstarts 1,965 6d72b2d 236 1 1 1
javaee-samples/javaee7-samples 2,509 4a67b23 2 1 0 0
citerus/dddsample-core 5,012 8870097 129 1 1 1
atomashpolskiy/bt 2,421 6218108 296 1 1 1

Total 162,466 N/A 79,744 1,568 1,353 734

Results (Gradle)

Project Stars (2024-11-11) Commit Total Tests Flaky (Java 17) Flaky (Java 21) ID
apple/servicetalk 925 00e740c 19,573 1,045 637 9
java9-modularity/gradle-modules-plugin 233 5fadfd6 82 &Y 57 0
micronaut-projects/micronaut-core 6,083 6alc54d 15,630 56 56 55
spinnaker/clouddriver 434 3ale81b 5,051 46 46 46
aadnk/ProtocolLib 287 e77ed96 141 30 30 30
jvm-bloggers/jvm-bloggers 231 c7cbf81 1,447 1 1 1
jenkinsci/JenkinsPipelineUnit 1,544 6bbc2c3 258 1 1 1
elki-project/elki 792 7f7482c¢ 1,245 1 0 0
antlr/intellij-plugin-v4 468 cf76d88 54 1 1 0
Total 136,858 N/A 73,005 1,384 972 267

18

Case Study: ID flakiness in Gradle Build Tool itself!

public class PatternSpecFactory ... {
private String[] previousDefaultExcludes;
private getDefaultExcludeSpec(...) {
Stringl[]
.getDefaultExcludes () ;
if (defaultExcludeSpecCache.isEmpty()) {

} else if (invalidChangeOfExcludes (
defaultExcludes)) {
failOnChangedDefaultExcludes(...);
// throws "InvalidUserCodeException"

}

}
private boolean invalidChangeOfExcludes (String

[] defaultExcludes) {

return !Arrays.equals (
previousDefaultExcludes,
defaultExcludes) ;

Fig. 2. Snippet of the PatternSpecFactory class from the Gradle core

defaultExcludes = DirectoryScanner

public class DirectoryScanner ... {
private static final Set<String>
defaultExcludes = new HashSet<>();
public static String[] getDefaultExcludes() {
synchronized (defaultExcludes) {

- return defaultExcludes.toArray (new
String[0]);

}
}

Fig. 3. Snippet of the DirectoryScanner class from the Gradle core

19

Study of ID Test “Propagation”

e Project Selection
69 “random” Gradle projects (without star threshold)
e Detected 322 “Hard-to-Fix” ID Tests

Project has no way to control ID flakiness without removing the
dependency on some external code

e Our accepted PR to Gradle:

Resolves 109 of these, and potentially many more!

20

Summary

e NonDex

Works for multiple Java versions and build tools
e |ID Flaky Tests

More prevalent in modern Java projects
e Propagation of Flaky Tests

Practicality to fix flaky tests

21

